Spin gymnastics

- Spin packets
- RF pulses
- The rotating frame
- Signal detection
- Magnetic field gradients
- Spin echoes

Spin packet - isochromat

Free precession

cf. spinning top

$$\frac{\mathrm{d}\mathbf{m}(t)}{\mathrm{d}t} = -\gamma \mathbf{B}_0 \times \mathbf{m}(t)$$
$$\omega_0 = -\gamma B_0$$

Radiofrequency (RF) field, **B**₁

- Magnetic field B₁
 (B₁<<B₀) rotating in *xy*-plane with frequency ω_{RF}
- Produced by the RF coil

Resonance

- **m** tilted from z-axis if $\omega_{\rm RF} \approx \omega_0$
- Resonance!

freq. of perturbation = some natural freq. of the system

$$\frac{\mathrm{d}\mathbf{m}(t)}{\mathrm{d}t} = -\gamma \mathbf{B}(t) \times \mathbf{m}(t)$$
$$\mathbf{B}(t) = \mathbf{B}_0 + \mathbf{B}_1(t)$$

Rotating frame - lab view

 Reference frame rotating in *xy*-plane with frequency ω_{RF}

seen from the lab

Step into the rotating frame

 Motion of m appears simpler: rotation of m around B₁ with freq. ω₁

> $\omega_1 = -\gamma B_1$ nutation frequency, ω_1

seen from the rotating frame

rotating frame often used implicitly

RF pulse

 Short burst of RF radiation (a few μs)

 $\alpha = \omega_1 t_{\rm RF}$

nutation angle, α pulse length, $t_{\rm RF}$

flip angle (- α) **RF** phase (i.e. axis of rotation in the rotating frame) Calculate the Cartesian components of the magnetization after the following RF pulses applied to thermal equilibrium magnetization: a) 90°_{x} b) 90°_{y} , c) 180°_{x} d) 180°_{y} What RF pulse would give the following rotation: a) $(1, 0, 0) \rightarrow (-1, 0, 0)$ b) $(1, 0, 0) \rightarrow (0, 0, 1)$ c) $(1, 0, 0) \rightarrow (0, 1, 0)$

Macroscopic magnetization, M

$$\mathbf{M}(t) = \int \rho(\mathbf{r}) \mathbf{m}(\mathbf{r}, t) d\mathbf{r}$$

time, tposition, **r** spin density, ρ

integral over entire sample

Signal detection

Rotating magnetization
 => alternating voltage
 in the coil

$$S \propto M_{xy}$$

signal, *S* transverse magnetization, M_{xy}

Detection in the rotating frame

• Real and imaginary parts of the signal S correspond to M_x and M_v in the rotating frame

$$S(t) \propto M_x(t) + iM_y(t)$$

• Different $\Delta \omega_0$ for spin packets experiencing different B_0 or σ

Refocusing by 180° pulses

Spin echo!

Sketch S(t)

Spin echo pulse sequence

- a.k.a. Hahn echo
- T₂ measurement
- 90° τ 180° τ acq

Magnetic field gradients, G

Inhomogeneous magnetic fields

gradient vector

$$B_{0}(\mathbf{r}) = B_{0}' + \mathbf{G} \cdot \mathbf{r}$$
homogeneous component

$$B_{0}(z) = B_{0}' + Gz$$

$$\omega_{\mathrm{RF}} = -\gamma B_{0}'$$

$$\Delta \omega_{0}(z) = -\gamma Gz$$

Spin evolution in a gradient

 $\Delta \omega_0(z) = -\gamma G z$

Under what conditions would the spins behave in the following way?

