Spin gymnastics

- Spin packets
- RF pulses
- The rotating frame
- Signal detection
- Magnetic field gradients
- Spin echoes

Spin packet - isochromat

Ensemble of spins experiencing the same magnetic field

Each μ_{i} obeys quantum laws, but \mathbf{m} behaves classically!

Free precession

cf. spinning top
$\frac{\mathrm{d} \mathbf{m}(t)}{\mathrm{d} t}=-\gamma \mathbf{B}_{0} \times \mathbf{m}(t)$

$$
\omega_{0}=-\gamma B_{0}
$$

Radiofrequency (RF) field, \mathbf{B}_{1}

- Magnetic field \mathbf{B}_{1} ($B_{1} \ll B_{0}$) rotating in $x y$-plane with frequency $\omega_{\text {RF }}$
- Produced by the RF coil

Resonance

- m tilted from z-axis if $\omega_{\mathrm{RF}} \approx \omega_{0}$
- Resonance!
freq. of perturbation $=$ some natural freq. of the system

$$
\begin{aligned}
& \frac{\mathrm{d} \mathbf{m}(t)}{\mathrm{d} t}=-\gamma \mathbf{B}(t) \times \mathbf{m}(t) \\
& \mathbf{B}(t)=\mathbf{B}_{0}+\mathbf{B}_{1}(t)
\end{aligned}
$$

Rotating frame - lab view

- Reference frame rotating in $x y$-plane with frequency ω_{RF}

seen from the lab

Step into the rotating frame

- Motion of m appears simpler: rotation of \mathbf{m} around \mathbf{B}_{1} with freq. ω_{1}

$$
\omega_{1}=-\gamma B_{1}
$$

nutation frequency, ω_{1}
rotating frame often used implicitly

seen from the rotating frame

RF pulse

- Short burst of RF radiation (a few $\mu \mathrm{s}$)

$$
\alpha=\omega_{1} t_{\mathrm{RF}}
$$

nutation angle, α
pulse length, $t_{\text {RF }}$

Calculate the Cartesian components of the magnetization after the following RF pulses applied to thermal equilibrium magnetization:
a) $90^{\circ}{ }_{x}$
b) $90^{\circ}{ }_{y}$,
c) 180°
d) $180^{\circ}{ }_{y}$

What RF pulse would give the following rotation:
a) $(1,0,0) \rightarrow(-1,0,0)$
b) $(1,0,0) \rightarrow(0,0,1)$
c) $(1,0,0) \rightarrow(0,1,0)$

Macroscopic magnetization, M

$\mathbf{M}(t)=\int \rho(\mathbf{r}) \mathbf{m}(\mathbf{r}, t) d \mathbf{r}$
time, t
position, \mathbf{r}
spin density, ρ
integral over entire sample

Signal detection

- Rotating magnetization => alternating voltage in the coil

$$
S \propto M_{x y}
$$

signal, S
transverse magnetization, $M_{x y}$

Detection in the rotating frame

$\Delta \omega_{0}=\omega_{0}-\omega_{\mathrm{RF}}$
offset frequency, $\Delta \omega_{0}$

- Real and imaginary parts of the signal S correspond to M_{x} and M_{y} in the rotating frame

$$
S(t) \propto M_{x}(t)+i M_{y}(t)
$$

Loss of coherence

- Different $\Delta \omega_{0}$ for spin packets experiencing different B_{0} or σ

Refocusing by 180° pulses

Spin echo!

Sketch $S(t)$

Spin echo pulse sequence

- a.k.a. Hahn echo
- T_{2} measurement
- $90^{\circ}-\tau-180^{\circ}-\tau$ - ac

signal form $M_{x y}(2 \tau)=M_{0} \exp \left(-\frac{2 \tau}{T_{2}}\right)$

Magnetic field gradients, G

- Inhomogeneous magnetic fields

homogeneous component

$$
\left.\begin{array}{c}
B_{0}(z)=B_{0}^{\prime}+G z \\
\omega_{\mathrm{RF}}=-\gamma B_{0}^{\prime}
\end{array}\right\} \Delta \omega_{0}(z)=-\gamma G z
$$

Spin evolution in a gradient

Under what conditions would the spins behave in the following way?

