Exchange

- Time-scales defined by NMR
- NMR spectrum from slow to fast exchange

$0^{\text {free surfactant }}$

Relevant time-scales for exchange

- T_{1}-relaxation: s
- T_{2}-relaxation: ms-s
- PGSE: ms-s (under our control!)
- NMR spectrum: ms

Dynamic equilibrium

$\mathrm{A} \underset{k_{\mathrm{B}}}{\stackrel{k_{\mathrm{A}}}{\longrightarrow}} \mathrm{B}$

Fractional populations: p_{A} and p_{B} Resonance frequencies: v_{A} and v_{B} Exchange rate: $k=p_{\mathrm{A}} k_{\mathrm{A}}=p_{\mathrm{B}} k_{\mathrm{B}}$

Slow exchange

- $k \ll\left|v_{\mathrm{A}}-v_{\mathrm{B}}\right|$
- Superposition of sub-spectra

Fast exchange

- $k \gg\left|v_{\mathrm{A}}-v_{\mathrm{B}}\right|$
- One peak at weighted average frequency:

$$
v_{\mathrm{av}}=p_{\mathrm{A}} v_{\mathrm{A}}+p_{\mathrm{B}} v_{\mathrm{B}}
$$

From slow to fast exchange

$\Delta v_{\mathrm{A}}=6 \mathrm{~Hz}$
$\Delta v_{\mathrm{B}}=1 \mathrm{~Hz}$
$p_{\mathrm{A}} / p_{\mathrm{B}}=2$ Δv_{av} ?

How to explain transition from slow to fast?
Why is $\left|v_{A}-v_{B}\right|$ important?

Complex numbers

$z=x+i y=r e^{i \theta}$
real part, x imaginary part, y magnitude, r phase, θ

Useful relations

$$
\begin{aligned}
& x=r \cos \theta \\
& y=r \sin \theta \\
& r=\sqrt{x^{2}+y^{2}} \\
& \theta=\tan ^{-1}(y / x)
\end{aligned}
$$

Rotation in 2D

Circular motion

$\theta=\omega t$
angular frequency, ω time, t

$$
\begin{aligned}
& z=r e^{i \omega t} \\
& x=r \cos (\omega t) \\
& y=r \sin (\omega t)
\end{aligned}
$$

Sketch $m_{x}(t), m_{y}(t)$, and $m_{z}(t)$ for the magnetization vector below.

Sketch $m_{z}(t), m_{x}(t), m_{y}(t)$, and $\theta(t)$ for the magnetization vector below.

Time-dependent frequency

$\theta(t)=\int_{0}^{t} \omega\left(t^{\prime}\right) d t^{\prime}$
ω fluctuates with time
(chemical exchange, decoupling, magic-angle spinning, diffusion, imaging ...)

Detection in the rotating frame

- Real and imaginary parts of the signal S correspond to M_{x} and M_{y} in the rotating frame

$$
S(t) \propto M_{x}(t)+i M_{y}(t)=M_{x y} \exp (i \theta)
$$

One spin packet

What would the figure below look like in the case of a) fast and b) slow exchange? Make sketches in the figure. $p_{\mathrm{A}} / p_{\mathrm{B}}=2$

Intermediate exchange

$\Delta v_{\mathrm{A}}=6 \mathrm{~Hz}$
$\Delta v_{\mathrm{B}}=1 \mathrm{~Hz}$
$p_{\mathrm{A}} / p_{\mathrm{B}}=2$
simulation with 1000 spin packets

