Exchange

- Time-scales defined by NMR
- NMR spectrum from slow to fast exchange

Relevant time-scales for exchange

- *T*₁-relaxation: s
- T_2 -relaxation: ms-s
- PGSE: ms-s (under our control!)
- NMR spectrum: ms

Dynamic equilibrium

Fractional populations: p_A and p_B Resonance frequencies: v_A and v_B Exchange rate: $k = p_A k_A = p_B k_B$

Slow exchange

- $k \ll |v_{\mathsf{A}} v_{\mathsf{B}}|$
- Superposition of sub-spectra

Fast exchange

•
$$k \gg |v_{A} - v_{B}|$$

One peak at weighted average frequency:

From slow to fast exchange

$$\Delta v_{A} = 6 \text{ Hz}$$
$$\Delta v_{B} = 1 \text{ Hz}$$
$$p_{A}/p_{B} = 2$$
$$\Delta v_{av}?$$

How to explain transition from slow to fast? Why is $|v_A - v_B|$ important?

Complex numbers

$$z = x + iy = re^{i\theta}$$

real part, ximaginary part, ymagnitude, rphase, θ

Useful relations

Rotation in 2D

9

Circular motion

 $\theta = \omega t$ angular frequency, ω time, *t*

$$z = re^{i\omega t}$$
$$x = r\cos(\omega t)$$
$$y = r\sin(\omega t)$$

Sketch $m_x(t)$, $m_y(t)$, and $m_z(t)$ for the magnetization vector below.

Sketch $m_z(t)$, $m_x(t)$, $m_y(t)$, and $\theta(t)$ for the magnetization vector below.

Time-dependent frequency

$$\theta(t) = \int_{0}^{t} \omega(t') dt'$$

 $\boldsymbol{\omega}$ fluctuates with time

(chemical exchange, decoupling, magic-angle spinning, diffusion, imaging ...) 13

Detection in the rotating frame

 Real and imaginary parts of the signal S correspond to *M_x* and *M_y* in the rotating frame

$$S(t) \propto M_x(t) + iM_y(t) = M_{xy} \exp(i\theta)$$

14

One spin packet

random jumps between site A and site B What would the figure below look like in the case of a) fast and b) slow exchange? Make sketches in the figure. $p_A/p_B = 2$

Intermediate exchange

$$\Delta v_{A} = 6 \text{ Hz}$$

 $\Delta v_{B} = 1 \text{ Hz}$
 $p_{A}/p_{B} = 2$

simulation with 1000 spin packets