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Abstract

Theoretical aspects on the NMR of quadrupolar fonic nuclei in micellar
solutions aud amphiphilic liguid crystals. Wennerstrém, H.; Lindblom, G.;
Lindman, B. (Physical Chemistry 2, Chemical Center, Lund TInstitute of
Technology, P.O.Box 740, 220 07 Luad, Sweden).

Chemica Scripta (Sweden) 1974, 6 (3), 97-103.

A theoretical framework for the interpretation of NMR quadrupole
splittings and relaxation times of alkali and halide counter-ions in
amphiphile—water systems is presented. Special attention is payed to the
effect of the macroscopic and microscopic anisotropies of the systemis.
Explicit expressions for the quadrupole splittings are given. It is stressed
that in the discussion of the relaxation in an isotropic system that is locally
anisotropic, one has to consider both a fast local motion and a slow iso-
tropic motion over the dimensions of the aggregates.

Introduction

Nuclear magnetic resonance (NMR) of ionic nuclei such as e.g.
Na*, Rb+, Cl- and Br- has proved to be a valuable tool in the
study of the microscopic structure and the microdynamic
propertics of aqueous solutions containing ionic amphiphiles,
NMR investigations of alkali and halide ions in micellar solutions
[1-4], in lecithin vesicle systems [5] and in anisotropic liquid
crystals [6-8] have been reported in recent years. In some
respects  these amphiphile—water systems show considerable
deviations from simple fluids and the interpretation of experi-
mental data is therefore often not straight-forward. ‘

Although the examples in the present treatment will be taken
from the field of amphiphilic systems the equations derived
will give a basis for a similar analysis for other types of colloidal
solutions, such as protein and polyelectrolyte solutions. On some
important points the considerations presented are also relevant
for 'H, *H and 3C NMR investigations of solutions containing
molecules or aggregates of colloidal dimensions. The results
obtained should also be directly applicable to NMR studies
alming at an elucidation of the interactions between small ions
and biological membranes. In the field of membranology, a
negligibly perturbing method like NMR is of great significance,

The NMR parameters of interest for ionic nuclei are relaxation
times, chemical shifts and in anisotropic systems also guadrupolar
splittings. The present work is an attempt to give a theoretical
framework for the interpretation of relaxation times and
quadrupole splittings.

7—141991

I. Basic theory

All alkali and halogen nuclei except fluorine have spin quantum
numbers, [, greater than one half and consequently possess
quadrupole moments, The subsequent discussion will be con-
centrated on quadrupolar nuclei. The most important terms
in the nuclear spin hamiltonian are then usually those representing
the nuclear Zeeman interaction and the interaction between
the nuclear quadrupole moment, eQ, and the electric field
gradients at the nucleus. Thus in frequency units

2
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Here 2av;=w,, the Larmor angular frequency., The ani-
sotropic parts of the chemical shift have been neglected, ¥,
is a component of the irreducible electric field gradient tensor.
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The index N indicates that the derivative is taken at the nucleus

in question, A, is a component of a second rank irreducible
tensor operator working on nuclear spin functions
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nection with the Wigner—Eckart theorem [9).
The quadrupole coupling term in eq. (1) can be ¢valuated in any
coordinate system. Due to the presence of the Zeeman term it is
convenient to express the spin operators in a laboratory-fixed

is a reduced matrix element as defined in con-
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coordinate system. It is more natural on the other hand to
express the electric field gradients in a principal axis coordinate
system fixed at the nucleus, The quadrupolar hamiltonian can
then be written

Hq=fo g (-0 foq Aé" Dg".{? (QLM) 4
where Dy, is a Wigner rotation matrix element [9] and Q s Stands
for the three eulerian angles that specify the transformation from
the molecular system (A4) to the laboratory system (L), In the
following all D matrix elements will be of rank two and the super-
script is omitted. The superscripts on V_, and A,y indicate in
which coordinate system the quantities should be taken. If
molecular motion has to be taken into account, the hamiltonian
in eq. (4) becomes time-dependent through the time dependence
of the eulerian angles Q. In an isotropic! solution the mean
values of the Wigner rotation matrix elements are zero and the
quadrupole interaction gives only relaxation effects. In an
anisotropic! medium like a lamellar or hexagonal liquid crystal
the mean value of D(£;,,) is not necessarily zero and one may
observe quadrupole splittings in the NMR spectrum.

The present treatment will mainly be concerned with uniaxial
liquid crystalline phases and following Luckhurst [10] the
symmetry axis will be referred to as the director. We now con-
sider a phase which is macroscopically aligned in such a way
that the director has the same direction throughout the sample,
If the transformation from the molecular coordinate system
to the laboratory system is performed via the director coordinate
system (D) (cf. Fig. 1} eq. (4) reads

Ho=po 2 (=1 V2 A Dol Qprs) Do i) (5)
The angles Qp,, specify the transformation from the molecular
to the director system and Q;,, gives the corresponding quantity
for the transformation from the director to the laboratory
system. All quantities except D, () in eq. (5) remain constant
over the molecular motion if the magnitude of the field gradient
is assumed constant,

Generally, the amphiphilic systems are cylindrically symmetrical
around the director [10, 11] which makes the averages D,,{(p)
zero unless ¢” =0 [[0]. The separation of the hamiltonian ineq. (1)
into a time dependent part H,(+} and a time independent part
Hy e, H=H,+ H{t) gives
H,

Q

= -l +ﬁQw§ (-1)¢ foq Aé’- DOQ(QDJ!)DQ"G(QLD) (6)
H{)=Bo 2. (= D VY A Do Q) { Dy o[ Qs (1)
7e'q"

- ’Sq_'ubuq(QD,‘.!)} (7)

The condition for the division of the hamiltonian into two well-
defined parts is that the motion causing averaging of the
quadrupole interaction is fast compared to the interaction in
frequency units. It is thus assumed that the motion around the
director is much faster than a quantity of the order of

ﬁo ¥ f’q{Dq‘q(QD‘\rf) - Jq’o Doq(QDM)}

! The difference between isotrapic and anisotropic fluids is not distinct in
NMR theory. The isotropy or anisotropy of a system should be judged
with reference to the interactions present, Thus a solutien is considered
isotropic here if the mean value, taken over a time that is short compared to
the inverse of the quadrupole coupling constant, of DR (Qypp) s zero for
all g7, g. A soluation is anisotropic if the mean value, taken over a time that
is long compared to the inverse of the guadrupole coupling constant, of
D2 4831,) is non-zero for at least some ¢', 4.
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Fig. 1. Schematic drawing of the mesomorphous structure in a lamellar
phase. The different coordinate systems used in text are outlined in the
figure, laboratory frame (L), director frame (D) and molecular frame (Af).
Orp and Opay are angles between z-axis in laboratory—director systems and
director—molecular systems, respectively,

and that the change of the director orientation is slower than
130 foq Do Q(QDM) Dq'o(QLD)

So far it has been assumed that the nucleus possessing a
quadrupole moment can be considered as fixed in a molecule or
a complex, For alkali and halide jons in water-amphiphile
systems this is probably not a valid assumption, Instead, the
NMR data have to be analysed in terms of two or more sites with
different quadrupole couplings and correlation times. If the
fraction of the nuclei at site / is denoted Pi, €q. {6) can be
generalized to

Hﬁij;Hé (8

where H} is given by eq. (6) for site i, Here it is assumed that the
exchange is fast between the siles compared to the quadrupote
interaction. It has been shown [I2] that relaxation in the
presence of chemical exchange can be accounted for by a time-
dependent hamiltonian

H(1)= ;f,(f)ﬂi(f) (8)

where H'(t) is given by eq. (7). The function f{t) is equal to
unity if the nucleus considered is at site 7 at a time ¢ and zero other-
wise.

II. Quadrupole splitfings

In an anisotropic medium the quadrupole interaction does not
average to zero which gives rise to a quadrupolar term in the
static hamiltonian. If this term is small compared 1o the
Zeeman term only the secular part of Hy needs to be considered
and from eq. (6)

Hy= —vp L +vo S(3cos™ 0,5 1) (312 - 1%)/6 (1)
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where # and ¢ are equal to the eulerian angles § and y respectively.
The effective electric field gradient is thus cylindrically symmetric
around the director.

Usually the counter-ions reside in different sites so that eqs.
{8) and (10) have to be combined. For a sample with uniform
director orientation the NMR spectrum consists of 2I peaks
centered at the Larmor frequency and equally spaced by

A0 = |(3cos B — 1) 3 pyvl S| = |(Beos* Op— D (g S| (112)
3

For [ =1 the two peaks are of equal intensity while for 7 =3/2 the
integrated intensity ratio between the peaks is 3:4:3.

For a powder sample where all values of cos 0, are equally
probable the distance between peaks in the NMR spectrum
corresponds fo that for 8,5, =90° in eq. {11) [13], i.e. the splitting,
A, for a powder sample is given by

A, =2 piva Sl (11 b)
i

Equation (11b) is valid provided broadening effects due to ex-
change and relaxation phenomena can be neglected.

For nuclei with half integral spin quantum numbers the NMR
line corresponding to the transition m=1/2 to m= —1/2 is not
affected by the static quadrupole interaction to first order. In
spite of this an observation of a sharp peak at the Larmor fre-
quency deceptively has lead some authors to interpret their
experimental data as if static quadrupole interactions are absent
[14].

In an aligned sample the second order terms result in an
orientation dependent shift of the central peak for a particular
site of [13, 135]

oy, s =(ra SHUGr) {H(7+ 1)} (cos™ 0,5 1) (9 cos™ 0,5 1)
(12)

For a powder sample this shift term gives rise to an absorption
curve having fwo marked peaks separated by [15]

Ay =250 S I(T+ 1) -3}/ (1440) (13a)

and for several sites

A=25(F vl SY{IT+ 1) - 3}/(14dry) (13b)
i

For a given 6,5 the magnitude of the observed quadrupole
splitting is determined by the factors p;, », and $; according to
eqs. (11)-(13). In concentrated micellar solutions the fraction of
fons bound is known to be between 0.5 and 0.8 [16] and it seems
reasonable to assume that in a corresponding liquid crystalline
system the fraction of bound ions is at least that large. It must,
however, be Tealized that an ion interacting with a charged surface
can be bound in several different ways. Thus when discussing
quadrupole splittings more than two types of binding sites may
have 1o be considered.

The electrical field gradients at the centre of an ion can arise
from several sources, In an electrostatic model, which we think
is adequate in the present systems, the main contribution to
the field gradients comes from the charges of the amphiphilic ions
and the dipoles of the water [17]. A point charge Z (in atomic
units) at the distance » (in m) from a nucleus with a quadrupole
moment @ (in m?) gives a quadrupole coupling constant v,
(in Hz) of [13]

2104 2 10°(1 +v.,) (2£+ 3) [e)4

ve 102I—1)

4
Se I (14
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where y,, is the Sternheimer antishielding factor [17] and ¢ is the di-
electric constant of the medium, For a dipole moment u (in
Debye) directed parallel (+) or antiparallel { ) to the dipole-
nucleus vector the corresponding expression is

6.52 % 10751 +.) (zﬁ 3) Ou

Se i"'i

N

A

(15}
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For a sodium nucleus [17} | +y,=5.1 and @ =0.11 = 10~ m2.
Assuming that ¢>1 eq. (14) gives for a sodium ion being at a
distance of 5 x 10-1® m from the charge of an univalent anionic
amphiphile »5 =62 kHz (simple estimates give a minimal distance
of 4.5-5.0x10-* m between a hydrated sodium ion and an
amphiphilic ion}. From eq. (15) vo = —270 kHz for the interac-
tion between a sodium nucleus and a single water dipole at a
distance 2.4 x10-'* m. However, in the systems under con-
sideration any sodium nucleus will simultaneously interact with
several water dipoles and their contributions to v, will largely
cancel. Thus it is only an asymmetric hydration sheath that can
produce a net gquadrupole coupling. A displacement by 0.1 =
10— of one of the water moiecules in the first hydration layer
from the symmetrical configuration gives a net quadrupole
coupling », =43 kHz,

The magnitude of the order paramcter S is determined by two
factors. Firstly, the degree of anisotropy of the mesophase has
an effect on the order parameter. Secondly, it depends on the
angles Oy and ¢p,,. In lyotropic liquid crystals it appears that at
least the charged amphiphilic surface is rather rigid {18] so that
the normal to the surface does not alter its orientation appre-
ciably with time, For a system rigid in this sense the value of S
can change from [ to —1/2 depending on the angles 6, and
¢pu. For the case when =0, 50 at the “magic angle”, i.e.
85, =54.7°, This means that in spite of a high anisotropy of the
system the splitting A(®) may be small or unobservable as a
result of a very small order parameter. A further situation where
A(90) can be small although the anisotropy of the phase is large
occurs when different (145)’s have opposite signs causing a
partial cancellation of the terms in the sum of eq. (11).

A temperature dependence of the splitting A(8) can be inter-
preted in terms of a temperature dependence of the p,’s or the §)’s.
Furthermore, a transition from slow to rapid exchange condi-
tions will give rise to temperature dependent quadrupole split
spectra as described for deuterons {19]. This type of exchange
effects could lead to sufficient extra line-broadening to be
identifiable from the speciral shape.

The § values of hexagonal and lamellar mesophases of the
same system can easily be related to each other if the microscopic
structure at the water-amphiphile interface can be assumed
identical for the two phases. For the hexagonal phase the
quadrupole hamiltontan can be written

H,, Zﬁaw 2 (=1 VA Do Q) Dyrg(Qps) Porg(Qrp)

gt

(16)

since D {Qps) = 8,0 Dol Qps) (ef. ref. [10]), averaging over the
molecular motion yiclds

Hh = .BQ Z (_ 1)q Vf‘q A;l"' Doq(QSM) DOO(QDS) Dq"‘o(QLD) {n
qe”

The subscript 5§ denotes a coordinate system fixed at the

charged amphiphilic surface. This coordinate system is coincident

with the director system in a lamellar phase having planar

lamellae. For a hexagonal phase, built up of long rods in a hexa-
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gonal array the D and § coordinate systems are perpendicular
to each other and A, = —1/2H, (cf. ref. [20]} where H, is the
time-independent quadrupolar hamiltonian for the lamellar
mesophase. When the lamellae are not planar but form cornceniric
cylinders as e.g ina myelin type structure the splittings of the
jamellar and the hexagonal phases should be the same [21), if the
molecular motion along the amphiphile surfaces is fast ecnough.

The treatment given so far is intended to provide a general
basis for the interpretation of static quadrupole effects of
counterions in anisotropic amphiphile-water systems. Inaddition
the calculation of quadrupole couplings for a simple electrostatic
model has been performed. Several amphiphile-water systems
have been investigated experimentally to test the validity of the
theoretical results and to utilize the equations to obtain informa-
tion on amphiphile-counterion and counterion-water interactions
in such systems. Here some general results will be presented,

Table I summarizes some of our results ebtained by means of
nNa NMR for “powder” samples in two systems where the
amphiphiles have a sulphate end-group. It can be inferred that
for both systems the concentration dependence of the first-
order quadrupole splitting, A, is weak. This indicates that
both the p/'s and the Sys are only slightly affected by concen-
tration changes. The temperature dependence of the guadrupole
splitting in the sodium oclyl suiphate-decanol-heavy water
system was investigated and found to be only slightly tem-
perature dependent. This indicates that the p's and S5;'s also
are insensitive to temperature changes, From these findings it
seems that the observed quadrupole splitting is determined by the
structure of the phase, which does not change much with
temperature and concentration. T he experimental splittings given
in Table I are clearly compatible with the splittings calculated
from eqs. (14) and (15). Also as implied by the above considera-
tions A, of the hexagonal phase is close to half the value in the
lamellar phase, which is consistent with a planar structure of
the lamellae. Clearly, it appears possible to rationalize all
observations on these two systems by the theoretical treatment
given above,

Experimentally observed quadrupole splittings in the systems
octylammonium chloride-decanol-water (3Cl and **Clt NMR)
[15], dodecyltrimethylammonium chloride—water (3CI NMR)
[22], celyltrimethylammeonium bromide—hexanol-water (*'Br
NMR) [30] and sodium octyl sulphonate-decanol-heavy water
(**Na NMR) [7] also appear consistent with our treatment.
In the system sodium octanoate-decanol-water the phase de-
noted C {7] gives ia 21N splitting close to that estimated for an

Table 1. Observed 2 Na guadrupole splittings for some unoriented
mesophase samples with sulphate amphiphilic endgroup (the NMR
measurements were performed as in ref. [71)

Sample composition 3Na splitting &,

{mole %) Phase (kHz)
Sodium octylsulphate/decanal/water
4.0: 8.8:872 Lamellar 24.0
7.21159:76.9 Lamellar 274
9.8:13.3:76.9 Lamellar 32,0
8.3:14.8:76.9 Lamellar 323
8.7: 0.0:91.3 Hexagonal 8.0
Acroso] OT®{water
1,7:98.3 Lamellar 53.4
2.6:97.4 Lamellar 53.0
4.0 :96.0 Lamellar W §34

@ Aerosol OT stands for sodium di-2-ethylhexylsuiphosuccinate,
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electrostatic model, The lamellar D phase in this system gives
a considerably smaller ®*Na splitting and for high water con-
tents no splitting was observed [7]. We are not able to give a well
founded explanation to this observation.

111, Relaxation

For nuclei possessing quadrupole moments it is the time-
dependence of the quadrupole interaction that normally gives
the dominant relaxation mechanism. For a nucieus with f=3/2
it is only in the limit of “extreme narrowing”, i.e. J{we} =J(0)
(cf. below), that the longitudinal, 7y, and transverse, T, relaxation
times are well defined and [23}

VT, =1]T,=24x* 21— 1) (21 +3) J,,(0),

=82 (20— DRI+ 3L+ 013 T, (15 (18)
where the spectral densities are defined through
S tey
Iy )= VEO) VE@ o0 = 1 | VEO) VED
exp (= fwr) dr c (19)

In this simple case the observed NMR signal is a lorentzian
curve and the linewidth gives a measure of the spin relaxation
rates through Ay, = (7 Ty), where Avy, is the full width at half
height of the NMR absorption curve.

For the case where J(0)%=J(w,) and 7=3/2, Hubbard [24] has
given explicit expressions for the decay of the magnetization
in the z-direction and in the rotating xy-plane. A fourier {rans-
formation of the xy-decay gives a NMR signal consisting of two
superimposed lorentzian curves @ and & with the relative
intensities of 3:2 and linewidths given by

Av = (162]5) vp(1 + 1 3) {Toa(0) + TN (20 a)

A = (167/5) (1 +7°3) {T-salw0) + T (2000)} (20 b)
If the molecular motion can be described by a rotation diffusion
equation with an isotropic rotation diffusion constant D, the
spectral densities are [23]

Joqal@) = 7 {1 +(we )} 7. = 6/D; 21)
In the discussion of the relaxation of quadrupolar nuclei in amphi-
philic systems the assumption of a simple isotropic diffusion
is so crude that the results obtained from eq. (21) can only
provide a qualitative analysis of the data. A more realistic model
is needed in the evaluation of the spectral densities if a
deeper insight into the relaxation process is to be obtained.

In the presence of chemical exchange the expressions for the
relaxation times have to be modified. There are three limits
when the exchange rates do not influence the relaxation rates
explicitly:

(@) If exchange is slow compared to the relaxation in the
different sites, the NMR spectrum is a superposition of the
spectra characterizing the different sites.

(5 If on the other hand exchange is fast compared to the
relaxation but siow relative to the inverse correlation times

the spectral densities are given by

J_glw)= ?:pj T gqle) (22)

where JL () is the spectral density at site 1.
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(¢} The third case arises when the exchange time can be
considered as infinitely short. Then the correlation function is

ViO) VL= (3p V) (ji‘"p, Vik@) 23

that is, the field gradients are averaged over sites at each
instant and it is the correlation between the mean values that
counts,

In the transition ranges between these three regions of
exchange rates the theoretical treatment is more complicated.
The case when the exchange and relaxation rates are of the same
order of magnitude has for 7=13/2 been examined by Bull [25),
For the case when the correlation times and the life-times in the
different sites are of comparable magnitude one has to make
specific assumptions about the nature of the motion in the
system. If the direction of the electric field gradient tensor is
completely randomized at the exchange process and if expo-
nential correlation functions in the different sites are assumed
{12), e.q. (24) is obtained

Jw) = IZPi J ) ' (24)

where the spectral density J'{(@) of site i is modified so that the
effective correlation time is given by

Tnff.l‘"‘U“/%.f*‘”ﬁ.lj 25)

where v, ; is the rotational correlation time and 7, ; the life-time
in site J,

~
ITA, Relaxation in liquid crystals
In an anisotropic liquid crystal, shich is macroscopically aligned,
the time-dependent hamiltonian in eq. (7) gives the relaxation.
This hamilionian can be used to derive an equation of motion
for the spin density operator. Such a derivation does not differ
markedly from that for isotropic systems. One difference is
that the orthogonality relations for correlation functions of
irreducible tensor operators derived by Hubbard [26] can not be
used. For a spin system consisting of a single nucleus this does
not give rise to any severe problems, The equation of motion
for the density matrix in the rotating frame, o¥, is [27]

4 Taar = 0 explile—a' — B+ §) 1} Ruge e og- (26)
dt g

R is the relaxation super matrix and ¢ and f# denote both the
cigenstates of the time-independent hamiltonian (H,) and their
energies. Due to the exponential term in eq. (26), substantial
coniributions to the relaxation is obtained only when ¢ —a’=
g —f’. With this restriction on f§—p#’ it follows that only cor-
refation functions of the type ¥7(0) VX () enter into the relevant
elements of R [28].

The correlation functions obtained from eq. (7) are

VEO VEp@= 3 (=)™ V¥, V2 Do Q) D e oQ40)

pag’

#
{DQ'Q(QDM'(O)) D gpQapplx)) - Byra Do;Dop} 27N

In the derivation of eq. {27) the result that the eylindrical sym-

metry requires that D (Qpy(00) Dyl Qppz)) is zero unless
p’=-q" has been used. The factor D, (Q:p)D_ . o (Q;p)
makes the correlation functions orientation dependent. This in
turn implies that the relaxation times depend on the orientation
of the director with respect to the applied magnetic field.
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Thé expréssions for the linewidths in a spectrum with quadru-
pole splittihgs are somewhat different from the ones valid for
isotropic solutions. For I=3/2 the central peak corresponding
to the transition m=1/2—+m= —1/2 has the same linewidth as
the narrow component in eq. (204). The linewidths of the two
satellites have been calculated from eq. (26). It is only one element
of the super mairix R that contributes and

A"} = (6-’3/5) V%(l + ?]21’3) {joo(o) + j—n(wn) + jfza(zwo)} (28)

One possible cause of the time dependence of the quadrupole
interaction is a chemical exchange between sites having different
quadrupole coupling constants. For a iwo-site case where the
motion around the director is fast compared to the exchange, the
equations of section 2.3 of ref. [12] can be used to derive an
expression for the spectral densities. These are

Je—rqq(“’) = (Pxpzflg) ‘DQO(QLD) D-qo(Qu)) {(1'0 8- (ro S)z}z Tex
{1+ (wr,) '} (29)

here 7o, =pat; =17y,

For an unoriented sample where all values of Q;, are repre-
sented the observed relaxation behaviour is a superposition of
the relaxation of all the different microcrystallites. For such a
sample the decay of the M ,-magnetization, in principle, is de-
scribed by a continuous distribution of time constants,

IHB. Relaxation in isotropic systemnts

Micellar and vesicle solutions and cubic liguid crystals give, in
contrast to anisofropic liquid crystals, NMR spectra with a
resolution similar to that of simpfe solutions, The reason for this
is that these systems are isotropic over a distance of the order of
100 A, which is short enough for the diffusion motion to average
out the static quadrupole and dipole-dipole interactions.
Locally these isotropic systems should be very similar to the
corresponding anisotropic liquid crystalline systems, leading
to a local anisotropy. This local anisotropy can be very important
for the understanding of the relaxation.

Tt is often reasonable to treat the averaging of the quadrupolar
inferaction in these isotropic systems as a two-step process. Let us
take a micellar solution as an example, In the first step there is
a fast local motion partially averaging the quadrupole interaction
to (¥gS). If this were the only motion we could describe the
systert in terms of the time-independent hamiltonian of eq. (6)
and the time-dependent hamiltonian of eq. (7). The second step
leads to a time-dependence also in Hy of eq. (6) due to the
normally slower motion that requires diffusion over the
distance of a micellar diameter. This gives a set of hamiltonians

Hy= v 1y Hi()=(rg S/3) D Dyo(Qyn(t) AL (30)

and a hamiltonian H{(¢) as in eq. (7). The relaxation in isotropic
systems can thus be caused either by Hi(r) or by Hi(1).

‘We can get a picture of the relaxation process described by Hi(r)
by introducing as a local “director” the direction perpendicular
to the amphiphilic surfaces of the aggregates present in the
solution. Then the relaxation corresponding to H3(#) can be
described in terms of a time-dependence of the local director
orientation. This time-dependence can be due to aggregate (e.g.
micellar) rotation, to counter-ion diffusion along the curved
aggregate surface or to counter-ion exchange between aggregates.
Qbviously, processes such as those described here by A7) may be
significant also in the case of anisotropic liguid crystals and the
considerations above should apply to e.g. hexagonal phases.
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For lamellar phases we expect the orientation of the director to
change so slowly with time that the relaxation effects from this
process should be negligible. On the other hand, exchange of
counter-ions between microcrystallites with different director
orientations and counter-ion translational motion along curved
lamellae as in a myeline type structure may well have significant
relaxation effects.

It is expected that H {(¢y is of similar magnitude for isotropic
and anisotropic samples, whereas H3(r) should be quite different
for these two cases. Therefore, a comparison of relaxation times
for isotropic and anisotropic phases should make it possible to
decide whether Hi{#) or H(#) gives the dominant contribution
to the relaxation,

For small values of § in eq. (30) the interaction strength
represented by H3(f) is much smaller than the one represented
by HI(r). So if the slow motion is to contribute to the relaxation
rate its correlation time must be longer by a factor 1/5% than the
correlation time for the fast motion. Since the transverse but
not the longitudinal relaxation time depends on the spectral
density at zero frequency the fransverse relaxation is expected to
be most sensitive to the slow motion.

If the fast and the slow motions are assumed independent the
spectral densities in the expressions for the relaxation times are

- o 0) =% gql) + I gole) (31

where the superscripts s and f refer to the slow and fast motions
respectively. The mean value of J' is

T sa@) = | I galo, Qo) (32)

&

11 C. Relaxation effects of different motional processes

By means of the results obtained in the previous sections it is
possible lo estimate the effects of different moticns on the
counterion quadrupole relaxation rates in surfactant systems.
The magnitude of the relaxation fimes are determined by the
strength of the quadrupole coupling, which can be estimated as
in section 11, and by the correlation times.

In solutions containing spherical micelles an upper limit for
the correlation time of the slow motion can be obtained from the
Stokes® formula for the rotational diffusion coefficient [23] and

3
r 4 vy (33)

where # is the hydrodynamic radius of the micelle and 5 is the
viscosity of the medium, With r =14 ¥ [0~ m and T=298 K eq.
(33) gives in water 7,=2.8 » 10-* 5. This is the correlation time
that is obtained when the ion is considered as fixed at the
micelle surface. It is probable though that the counter-ions
diffuse at, or in the vicinity of, the micelle surface which leads
to a shortening of the correlation time. If the diffusion normal
to the micelle surface is neglected the correlation time can be
calculated from a value of D, in eq. (33). For a free sodium ion
in water solution D,~1.2»10-* m?*/s [29]. If it is assumed that
609, of the ions are bound so strongly to the micelle that they
do not move independently and the remaining ones diffuse as free
jons one obtains with 7 =14 = 10~*m and T=298 K v, =6.7 =
101 5, when the exchange between the sites is fast compared
1o the diffusional motion.

From the observed splitting in a lamellar phase and from a
correlation time as estimated above, the contribution from
the slow motion to the relaxation times can be calculated, using
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cqs. (8) and (30). In the system water-sodium octyl sulphate—
decano! the splitting is about 30 kHz in the lamellar phase
{cf. Table 1). For a corresponding solution with higher water
content containing spherical micelles having a hydrodynamic
radius ~ 14 % 10-1* m, the calculated relaxation times for slow
motion only with 7,=6.7 x 10-t® s are T} and 3 =26 ms which
is slightly longer than the observed value.

The contribution to the relaxation from the local motion is
more difficult to estimate. Here we will consider the exchange
between a site where the ion is bound to the surface and a site.
where the jon is free. The correlation time for this motion is
estimated fo be comparatively long, If for the waler-sodium
octyl sulphate-decanol system the splitting is explained through
a two-site model with p, =04, (v5.5), =0 and p;=0.6, (ry8)~
» 50 kHz the contribution to the relaxation from exchange can be
obtained from eq. (29). The orientation dependent factor
Do Qpp) D_go(2,p) s replaced by its isotropic mean value 1/5
and one obtains

1 | 10

ﬁ:?ﬁﬁ 38107,

A value 7, = 8.2 ¥ 10~'* s makes 1/ TE compatible with the experi-
mentally observed relaxation rate.

These order of magnitude estimates show that both the local
mofion and the overail siow motion can be responsible for the
relaxation. Experimentally it is often found that the relaxa-
tion times 7, and T, are nearly the same in micellar and
liquid crystalline solutions [6, 30, 31}, indicating that it is the
local motion that is most important in determining the relaxa-
tion rates. In the system water—cetyltrimethylammonium bromide
the relaxation rate was found to decrease significantly in going
from rodshaped micelles to a hexagonal liquid crystalline
phase [30]. This finding is hard to explain if the slow motion does
not contribute to the relaxation rate in the micellar solutions.

IV, Concluding remarks
1t has been our aim to present a theoretical framework for the
interpretation of quadrupole spliftings and relaxation times of
alkali and halide ions in amphiphile—water systems. The experi-
mental data are so far not extensive enough to permit general
statements on the applicability of the derived theoretical expres-
sions. However, above we have attempted to compare experi-
mental quadrupole splittings and relaxation rates with those
given by the theory, for some systems, where experimental
measurements have been performed. It was found, for example,
that observed *Na quadrupole splittings in systems where the
surfactant has a sulphate endgroup are in excellent agreement
with those obtained from a simple electrostatic model.
Changes in counter-ion quadrupole relaxation rates at phase
transitions are generally small which indicates that a fast local
motion is dominant in determining the relaxation. Using experi-
mentally determined gquadrupole. splittings and assuming the
critical local motion to be a translation of the ions perpendicular
to the surface a reasonable agreement between theory and
experiment was obtained. Other possible local motional
processes involve the rotational and translational motion of the
water molecules in the hydration sheath of the counter-ion,
For one system a significant reduction in relaxation rate at the
transition from an isotropic solution to a mesophase has been
observed, Our calculations show that a motional process,
involving lateral counter-ion diffusion gives a contribution to the
relaxation rate in reasonable agreement with this observation,
Systematic studies concerning the changes in relaxation rate at
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phase transitions have been initiated in order to provide more
information on the importance of the slow motions in the
systems.

On certain points the results can be applied to the interpreta-
tion of NMR experiments on the same type of systems using
other nuclei. The formulae concerning the quadrupole splittings
can e.g. be applied to deuteron splittings, the only difference
being that the field gradients are mainly of a covalent nature.
In the analysis of !H and '*C relaxation data in isotropic
systems it is often necessary to make a distinction between the
fast and slow motions as discussed in section IIIB. This
was done by Charvelin and Rigny [20] for a cubic liquid
crystailine phase but it is equally important for micellar and
vesicle solutions.
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Erratum

Chemica Scripta (Sweden) 1974, 6 (3), 97-103.

Article by H, Wennerstrdm, G, Lindblom and B, Lindman:
Theoretical Aspecis on the NMR of Quadupolar Ionic Nuclei in
Micellar Solutions and Amphiphilic Liquid Crystals.

An omission of a factor {/2 has been made in deriving eqs. (14)
and (15) which should read

_ 52 % 10%1 +0) (2e+3) 74 (14
e 12121 5¢ ] r°

and

VQ"'$

21-1 S5¢ ) rt {13

3.26 % 107°(1 + yo) (2e+3) Op
The theorcticatly calculated quadrupole coupling constants are
as a consequence of this too large by a factor of 2. The con-
clusions are not affected.

The following printing errors have also been detected on page
101 right column: (20a) on line 5 should be corrected to (20b)
and the factor in eq. (28) 6x/5 should be 16x/5.




