ON THE MOLECULAR SPECTROSCOPY OF THE GREENHOUSE EFFECT

Introduction

The greenhouse effect has been in the focus of major political discussions lately. As a
physical chemist I have felt the urge to understand the basis of the effect. Even though
the effect is well established and extensively discussed scientifically I have tried to
approach the problem from the fundamental perspective in order to establish a personal
understanding of the phenomenon. There are two obvious objections to this attitude; it
can be a waste of time to work out what has already been analyzed and there is always
the possibility that one makes a trivial mistake or forgets some important aspect of the
problem. The text below should be read with these reservations kept in mind. It is
written from a chemistry perspective with the aim of understanding the role of the

characteristics of the IR-spectrum of molecules for the greenhouse effect.

The radiation field

The basis of the greenhouse effect is the cooling occurring through emission of radiation.
[t is thus essential to start with an account of the theory for the description of the
radiation field. This is only briefly discussed in chemistry curricula, while it is more
extensively described in physics courses. The basic theory was worked out roughly
hundred years ago and the derivation of the Planck radiation law 1900 marks the birth
of quantum theory. In a confined space of vacuum of macroscopic volume V there are a
large number of modes of the radiation field. If the confining walls have a temperature T
and there is a mechanism for energy exchange between walls and the field, for example
through absorption/emission, there will be an equilibrium between the field and the
thermal bath. The different modes are then on average excited to the extent given by the
Boltzmann distribution, or more precisely the Bose-Einstein form. This yields the Planck

distribution law for the energy dEom in a small frequency interval dw

Vh w’dw

aE,, = n’c’ exp{ho /kT} -1

(1)

Since the function

f)=x3/{exp(x)-1} (2)



has its maximum value for xmax=2.822 it follows that the largest contribution to the
energy of a thermally equilibrated radiation field comes from frequencies around

... =2.822kT /% . At an ambient temperature of T=300K the corresponding wavelength
is 17 microns or 585 cm-!in wavenumber. Integrating the energy distribution over the

whole spectrum gives

E =40VT"/c (3ab),

o=m’k* /(60R°c*) =5.67- 10 kgs K™

where ¢ is called the Stefan-Boltzmann constant. From this the Helmholtz free energy
and the entropy can be worked out from standard thermodynamic relations. One can
note that the energy of the field increases with the forth power of the temperature.
The black body radiation is isotropic and this implies that a volume element dV emits a
radiation isotropically in all directions and from the Planck distribution law we have a

spectral density

1 dE,, ho’
4nV do  An’c{exp(how /kT) -1}

e,(w,T) = (4)

The energy flux leaving a volume element in the solid angle 2w dcos( 0) is then given by
cep 2t d(cos(0)) d(w). This will hold also for a volume element in direct vicinity of a

surface and we can use the relation to discuss absorption/emission of a body.

Microscopic description of absorption and emission of radiation

Einstein developed the fundamental equations for molecular description of energy
exchange between field and molecules. Consider, for simplicity, a system with two
energy levels k and 1 with an energy separation AE,, =/w,,. Einstein’s fundamental
contribution was to realize that there are three processes contributing to the energy
exchange; absorbtion, spontaneous emission and stimulated emission. The rate of

change of the population in the excited state | can in this picture be written

dP
EL (@B, P - 1@)B,P, = AP (5)



where I( w) denotes the intensity of the radiation field at frequency . For a molecule in
equilibrium with a radiation field the time derivative should be zero and it follows from

this condition that
B, =B, = {nzca /(hwiz)}Akz (6)

where A is called the coefficient of spontaneous emission. When Einstein derived these
equalities he used the condition that the expressions had to be consistent with Planck’s
law. When quantum theory was established the first equality follows from the Hermitian
properties of the transition moments, while one arrives at the second equality using

quantum electrodynamics.
In the macroscopic description of spectroscopy one uses Beer’s law
(@,7) = I(w,0)exp{-¢(w)z} (7)

to describe the absorption. The absorption coefficient ¢(w), with the character of an
inverse decay length, is in the absence of interactions, proportional to the concentration
of the absorbing molecules. It describes the same process as in eq.(5) and to be

consistent one has for a transition from state k to state | molecule M
ey (@=-wy)=c,a, (®-0y)=c,P(TB,Lw - a)kl){l —exp[-haw,, /(kT)]} (8)

Here L(x) represents a normalized line-shape function determined by the relaxation

behavior and Py(T) is the thermally equilibrated population of the initial state k and Bi
. h
is proportional to the Einstein coefficient of eq.(6) and B, = &B,d. For transitions
C

where the energy gap is smaller than the thermal energy the absorption can be very low,
as is well known in NMR. The absorbtivity ¢ is in chemical literature usually given in
terms of the molar absorption coefficient with “units” of area per mol. In the present

context it is simpler to describe concentration in terms of area (m?) per molecule.



The intensity of a spectral transition is always distributed over frequency by some “line-
shape” function L(w - w,,). This is affected by intermolecular interactions and change
when conditions like pressure changes. However, for a transition of an intramolecular
origin the integral over frequency is given by an intramolecular property, like a
transition dipole derivative, for vibrations. This quantity is often referred to as the
oscillator strength of the transition. Thus as transitions becomes more narrow the
absorption coefficient at the maximum increases accordingly. The invariance of the
oscillator strength is important for understanding how changes in line-shape affect the

net absorption/emission.

Energy exchange between radiation field and a material body

For a radiation field in equilibrium with a piece of matter there is a continuous
microscopic exchange of energy but with the net result that there is no energy transfer.
Depending on the molecular nature of the matter the absorption is more or less efficient,
but the requirement of no energy transfer, in any segment of the spectrum, provides an
important consistency relation. Consider a small area dS, of the body. Radiation of
orientation €2(0,¢) hits the surface and, neglecting scattering, the absorption per unit

time and area is

dJ , (0,0) =2mnce,(w,T)A(w,0)cosOd cos Odw (9)

where A is a material specific absorption power. At microscopic equilibrium there is a

matching emission Jem which amounts to

dJ,, (w,0) =2nce,(w)A(w,0)cosOdcosOdw (10)

From eqs.(9,10) we obtain a general relation between emission and absorption which is
called Kirchoff’s law. It is the macroscopic counterpart of Einstein’s relation in eq.(6),
which can be used to derive eq.(10) from a microscopic perspective. However, Kirchoff’s
law predates Einstein’s contribution and was (probably) known to Arrhenius in the
1990-ties. A body which completely aborbs all incoming radiation is called a black body.

In this case A=1 for all frequencies and directions. Such a black body emits radiation as



dJ” (,0) = 2mce,(w,T)cosbd cos Odw (11)
at given frequency and direction. The total emitted energy per time and area from a flat

surface is then obtained by integrating eq.(8) over all frequencies and a hemisphere

o0

1
J = 2ncfeo(w,T)da)fcosGdcosB =oT* (12)
0

0

One can note that eq.(12) gives an upper bound to emission from a body of temperature
T. Since emission and absorption are independent microscopic processes a black body
will emit according to eq.(12) even in the case where here is no equilibrium with the
radiation field. This is an important conclusion when one wants to understand energy
transfer by radiation. A black body at temperature T surrounded by vacuum will emit
radiation with an energy per unit area and time according to eq.(12). To maintain its
temperature the body has to received heat from a reservoir or it slowly cools down. For
areal body the absorbivity A isn’t identically one, but particularly in the infrared region
real materials with an inhomogeneous composition and rough surfaces behave similarly

to the black body.

Let us now consider the earth. It is heated on the day side by the sun, but there is
continuous emission of a black body character at all times. In the absence of an
atmosphere eq.(12) would apply and neglecting other contributions to the energy
balance the heating from the sun will balance the cooling from the IR-radiation giving an
average steady state temperature (counted on a 24 hour or a yearly basis) Such an
energy balance would yield an average temperature clearly lower than actually found.
What role can the atmosphere play in this context? There are basically two phenomena
to consider for the radiation; absorption/emission and scattering. When considering the
emitted IR radiation scattering can be neglected except for the occurrence of clouds or

other aerosol particles.

Emission from a black body shielded by an completely absorbing layer.

To illustrate the basic principle behind the “greenhouse effect” consider a large flat

surface of a black body of temperature Tg . Above the black body there is a layer of an



absorbing medium of thickness L. This layer is assumed to be thermally insulated from
the black body except for the exchange of energy due to emission and absorption of
radiation. The medium is also assumed to be in internal thermal equilibrium at
temperature T2. The medium has an absorption coefficient &(w) and it is assumed that
Beer’s law can be applied. Now consider the case when &(w)L >>1 for all frequencies.
This implies that all the radiation that comes in from the black body is absorbed in the
layer. By Kirchoff’s law it also implies that the layer behaves as a black body. It will then
emit at both its surfaces. The radiation emitted from the surface facing the black body
will be absorbed by the black body, while the radiation emitted from the other surface
will leave the system. Since we assumed that the layer was thermally insulated there

should be steady state where there is an energy balance for the layer and

E(absorbed) = E(emitted) —

oT, =20T; —=T,=2"""T, (13)
This illustrates how the device with a thermally isolated absorbing layer has two
interrelated properties. The radiation provides a cooling of the layer and consequently
the radiation energy emitted from the total system decreases by a factor of two, since
the temperature of the whole system seen from the outside has decreased with a
concomitant decrease in the energy output. Thus the model system provides an
illustration of the basis of the “greenhouse effect”. Note that it is essential that the layer
is thermally isolated from black body. If Tg=T> there is no change in the emitted energy
relative to the case when the layer is absent. If one extends the model to N separate
isolated black-body layers the temperature of the outer layer is N-1/4Tg showing that it is

potentially possible to reduce the outgoing radiation to very low levels.

Emission from a black body shielded by a partly absorbing layer

In practice one rarely has completely absorbing layers and this is certainly true for the
atmosphere. Consider a slightly modification of the model of the completely absorbing
layer. Assume that absorption only occurs in a frequency interval, m, = < ,, where it
is complete, while the layer is fully transparent in the remaining part of the spectrum. It
is clear that the emission from the system in the transparent part of the spectrum is

from a black body at temperature Tg. For the rest of the spectrum we have in principle



the same description as for the completely absorbing layer. The difference is now that

we have to integrate explicitly to calculate the radiation energy of this part of the

spectrum.
kT 4 hw,/kTy 3
E(absorbed) = % =
4nci exp(x) -1
ho, 1k, CXP 14
(kT)4 hw, [ kT, x3 ( )

E(emitted) =2 e
( ) 4w’’’ Y, exp(x) -1

The temperature dependence of these energies is not as simple as in the previous case.
We still have a T4 factor but also the integrals depend on T. According to eq.(13) the
temperature of the layer is a factor of 2-1/4 lower than Ts. In eq.(14) the integrand has a
maximum at 2.822 and if the integral covers values lower than that the second integral
is the larger, while the opposite is true if the main part of the integration is for high x-
values. The ratio of the two temperatures T2/Tg will accordingly be slightly smaller or
larger than 2-1/4, in the respective cases.

Seen from outside this system will emit as one black body in certain frequency ranges
and as another at other frequencies. The totally emitted radiation will lie in between

that of the two previous cases, as is intuitively obvious.

Emission from a black body shielded by an absorbing layer. General case.

In the general case the extinction coefficient &(w) is smoothly varying with frequency.
Then the layer is neither completely absorbing nor completely transparent. Since the
path-length through the layer depends on the angle of the radiation it is necessary to
explicitly consider the angular dependence. Per unit area the black body emits radiation
at an angle 6 according to eq.(11). This radiation energy will be partly absorbed by the
layer and the outgoing unaffected part is

JE (0,0)=J°

out em

(w,H)exp[—s(a))L/cos 6] (15).
The layer also emits and for given frequency and direction one has

J3" (,0) = 2mce, (a),Tz){l —exp|—-&(w)L/cos 6]} (16)



The same relation holds for the radiation going in the opposite direction towards the

black body. The total radiation energy emitted by the system is then

JUMI =

0%8

1
f2n:c{e0(a),TB)exp[—s(a})L/cos 9] + eo(a),Tz)[l - exp{—s(w)L/cos 0}]} cosBdcosOdw
0

(17)

For the case when the two temperatures Tg and T are equal we regain the normal black
body result. However, eq.(17) shows that in general the layer has an insulating effect in
a way that depends on the absorption coefficient. This in turn depends on the chemical
composition of the layer. If we consider the layer to consist of a gas enclosed between
transparent walls it is clear that the insulating effect depends on the spectrum of the
components and their amounts. For a black body around 300K the dominant
contribution to the energy of the radiation field comes from IR-region and it is
consequently the spectrum in the IR range that is most relevant. In this part of the

spectrum it is the vibration that is the relevant molecular degree of freedom.

Emission from a black body shielded by an absorbing gas atmosphere.

The model calculations above have demonstrated most of the essential qualitative
features of the “greenhouse effect”. Consider now a slightly more realistic model with a
gas-phase atmosphere above the black body radiator. We allow the temperature and
composition vary with the height z above the solid body. For the case where the gas
layer is finite (counted in molecules per area) a fraction of the original black body

radiation will pass through unaffected. In analogy with eq.(15) we have
me(wﬁ) = Jf,,, (W,Q)eXp{—fs(w,z)dz /cos@} (18)
0

In addition there will be emission/absorption in each layer of thickness dz. For a layer at

z there is an emission using Kirchoff's law ( A(w,z,0) = ¢(w,z)/cos8dz) of

dJ, (0,0,z) =2nce,(w,T)e(w,z)dcosOdz (19).



Only a fraction of this radiation reaches outside the gas atmosphere

dJ, (0,0,7) =2nce,(w,T)e(w,z)exp

—fe(a),z')dz'/cosH]dcosGdzdw (20).

By integrating over all layers and adding the radiation emanating from the black body

we obtain the total radiation energy reaching through the gas per unit time as

o 1 0
J, T, T(2),e(w,2)] =2Jccffeo((u,TB)exp[—fs(w,z)dz/cos@]cos@dcos@d(u
0 0 0

dzdcosOdw (21).

+2ncj: fjeo[w,T(z)]s(a),z)exp[_js(a),z’)dz' /cos6

000
For the case when the temperature is homogeneous and independent of z the eq.(21)
reduces to the ordinary expression for the radiation from a black body of T=Ts. ( The
integral over z can be performed analytically in this case) If one assumes no other
energy transfer than the radiation one can write down an expression for the energy
balance of each layer dz and obtain an equation determining also the temperature
profile. The principles are the same as for the more simple models discussed above. ( An
explicit calculation leading to an integral equation for the temperature profile is found in

additional material at the end.)

The role of the absorption spectrum

When applying the expressions derived above to actual calculations on how the energy
balance is affected by different molecules the absorption spectrum is the most crucial
input parameter. Experimental recordings from outside the earth show that there is a
characteristic spectral variation of the emitted IR radiation. (See figure 1) One approach
to understanding the role of different molecules in the energy balance is to
experimentally record the spectrum for a range of temperatures and pressures. This
data can then be used as input to numerical calculations. However, in order to establish
an understanding of the mechanisms it is often more helpful to develop approximate
analytical results. A measure of how transparent the atmosphere is at different

wavelengths and heights is obtained from
S(w.2) = [e(w,2)dz! (22).

If 2(w,0) >>1 itis the molecules in the atmosphere that emits the outgoing radiation,

while in the opposite limit 2(w,0) << 1 the atmosphere is transparent and the radiation



emanates from the ground. It is important to make the distinction between the integral
contribution of a certain compound to the cooling effect and the consequence of adding
more of such a compound. Intuitively it is obvious that adding a compound with an
absorption in a range where X(w,0) is small provides a large effect, while for a
compound with an absorption where Z(w,0) is already large should have a smaller
effect. One important part of this work is how to quantify this argument.

In the atmosphere the pressure at ground level is around 10°Pa and decreases by an

order of magnitude for approximately every 104m in height. Thus we have

p(z) = p(0)exp(-Az)
1/ A ~6000m

(23)
For the typically small molecules of the atmosphere like carbon dioxide, water or
methane the intermolecular interactions are weak enough that the rotational pattern is
resolved at the relevant pressures. Furthermore the lower the pressure the more
narrow are the spectral lines. This results in a non-trivial z-dependence of the

absorption coefficient e(w).

Figure 2 shows schematically how the temperature varies with height. There is a nearly
linear decrease in T from around 300K on the surface to 210K at 12km, where there is a
change to a slow increase with a maximum around 270K at 50km where the

temperature decreases again. In a linear approximation one can write for z<12000m

T(z)=T(0)+ <§> z=T(0)-75x10"z (24)

av

The most obvious explanation of the initial drop in temperature is that it is caused by
the greenhouse effect. The interpretation of the turnaround in temperature above 12km
is that heating mechanisms, emanating for example from absorption of UV-light by
ozone and from cosmic radiation dominates over the cooling from IR emission. The

lower the pressure the fewer molecules and the less energy is emitted.

The vibration rotation of carbon dioxide

10



Carbon dioxide is a linear molecule and with three atoms there are 9-5=4 vibrational
degrees of freedom. There is a symmetric stretch, which is not infrared active. There is
an asymmetric stretch with its basic frequency at 2349cm-! and a degenerate bending
mode at frequency 667cm 1. (See Figure 4) The latter is particularly important since the
absorption corresponds to the frequency range close to the maximum output energy for
a black body radiator at 300K. Figure 5 shows a quantitative estimate of the absorption
characteristics of carbon dioxide at a pressure of 1x105Pa. The measured absorption
coefficient provides a basis for estimating at which frequencies carbon dioxide can
absorb and reemit. At the surface of the earth the CO; content is around 350 ppm
(volume/volume).To a good approximation CO; is distributed in the gravitational field
with a Boltzmann weight
Cco, (2) = Ccp, (0)exp(=mc, 82/kT) =, (0)exp(-z/5000);T = 270K

(25)
Integrating the absorption through the atmosphere with its decaying content of CO>

yields

a(w)c e, (0)

eosl =225a(w)/cos(0)

S(0.0) = [ e(@,2)/cos(0)dz = a(w)/cos(0) [ cep, (2)dz =
(26)

Thus when the absorption coefficient a <0.4(m”/kg) absorption/reemission is small.
For ¢>0.4 such processes are important. With this measure the ranges 500 to 800cm-1
and 2250 to 2450cm! are the important frequency ranges. Even though there are peaks
and valleys in these ranges these do not reach as low level as 0.4. However, the data of
Figure 5 is relevant for atmospheric pressure and for lower pressures peaks and valleys
are more pronounced so one has to treat the conclusion with some care. Around 1100
cm-! there is a weak absorption band due to overtones. It appears to be below the limit

a <0.4(m*/kg) and thus giving only small contributions to the overall effect.

In a gas where the rotational relaxation isn’t too fast the spectrum can be analyzed as
exchange of combined vibrational and rotational energy. There is a technical difference
between the two [R-active modes in that the stretch conserves the linear symmetry, but

not the bend. Accordingly the selection rule is AJ=+1 (P and R-branches) for the stretch,
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while for the bend a change in vibrational energy can occur without a change in the
rotation so that AJ=0 is also allowed (Q-branch). Furthermore there is an occurrence of
1.1% of 13C. The effect on the reduced mass of the bending motion results in a shift of
19cm-1! of the vibrational frequency. This also gives rise to satellites in the spectrum.
The IR spectrum of carbon dioxide around 667cm-! is composed of a strong central peak,
labeled Q, due to the AJ=0 transition. Since rotational constants are slightly different in
the ground and excited vibrational states this peak has satellites due to the populations
of the thermally excited vibrational states. At 300K the calculated populations of the
degenerate energy level is around 8%, while for 210K it is only 2%. In addition to the
central Q peak there are the P, A]=1, and R, A]=-1, branches that cover a broader
frequency range covering around 100cm-! of resolved rotational lines on each side of the
Q-peak. These peaks also have satellites due to the vibrationally excited level. The IR
spectrum of carbon dioxide around 667cm-! thus consists of a number of strong
absorption peaks separated by 1.6cm-1, which overlap slightly at atmospheric pressure
where the width at half height is around 0.1 to 0.2cm-1. In addition there are a large
number of weaker satellite peaks, due to isotope substitutions and hot bands, shifted
from the main ones. These contribute to cover the spectrum to give an absorption that
ensures that the condition 2(w,0) > 1 over a broad range 500-800cm-1. Thus the
presence of carbon dioxide has the consequence that the IR radiation, in this frequency
range, sent from the surface of the earth is absorbed in the atmosphere and then
reemitted from a body that has a lower temperature. In this way carbon dioxide

contributes to the greenhouse effect in the radiation energy balance of the earth.

The stretching vibration at 2349cm-1 has only a P- and a R-branch. They have the same
characteristics as for the bending vibration, since the rotational motion is (essentially)
the same. Consequently one has absorption in a range #+100cm! around 2350cm-L. The
potential effect on the energy balance is different though since the contribution to the
black body radiation is smaller in this region. We have the ratio

vV =667cm™ <> 32kT:v =2349cm™ <> 11.3kT —

€,(2349) _11.3°[exp(3.2)-1] _ 0.013 (27)
e,(667)  32°[exp(113)-1]
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indicating that the absorbance in this region has a much lesser effect on the energy

balance.

Contributions from water molecules

Water is a bent molecule with only three vibrational modes. There are two stretch
modes; one at basic frequency of 3757cm1 (asymmetric stretch, IR active) and one at
3652cm ! (symmetric strech). There is also a bending mode around 1540cm-1. All these
frequencies refer to isolated molecules in the gas phase. A spectrum is shown in Figure
6a. The water molecule is an asymmetric top (the three moments of inertia all different)
and the rotational spectrum contains a large number of transitions. However, the width
of the spectrum is largely determined by kT but the strong intensity makes the
absorption significant up to £200cm-! from the center of the transition. The rotational
constants are substantially larger for water than for carbon dioxide making the intrinsic
splittings between lines larger, but this effect is compensated by the fact that there are
many more transitions while the Q-branch is absent. For water there is also the odd
molecule that has a deuterium rather than a proton. This strongly affects the spectrum
through both the exclusion principle and through the change in moment of inertia. The
bending mode of water is at the high end of the energy distribution at 300K. Compared
to carbon dioxide and a calculation as in eq.(25) yields eo(1540)/eo(667)=0.18
(T=300K). Both water and carbon dioxide is present in substantial amounts in the
atmosphere and they both contribute to the “greenhouse effect”. For the case when the
spectral region around the respective bending modes dominate one would conclude that
carbon dioxide contributes more due to the higher energy density in the relevant
frequency range. However, for water intermolecular interactions provides important
complications to this simplistic picture. The concentration profile of water in the
atmosphere is very different from the other components. At ground level the relative
humidity is typically in the range 40-90%, which at T=300K corresponds to a partial
pressure of 1.5-3. kPa, which is much higher than for carbon dioxide. On the other hand
at T=210K, corresponding to a height of 12km, the saturation pressure is 0.8Pa, which is
of the same order as the carbon dioxide pressure at this height. At all heights of 12km
and below the water can be near saturation. Close to phase separation there appears
clusters, dimers, trimers etc in the gas phase. These generate IR absorption/emission

from intermolecular motions, librations, in the frequency range 400-700cm-1. The
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appearance of such species depends strongly on temperature and partial pressure of the
water making it difficult to make general statements on how important they are for the
greenhouse effect. However, if they occur in substantial amounts there is a major
overlap with the spectrum of the bending vibrations of carbon dioxide. This could to

some extent mask the effect of CO».

When water condenses to a liquid (or solid) phase the stretching vibrations cover a
large frequency range around 2600cm-! and up. (See Figure 6b) This absorption is wide
enough to give a noticeable contribution to the energy balance, in spite of the high
frequency. For the bending mode on the other hand condensation gives a narrowing. An
additional most significant effect is that on condensing to a liquid there appear low
frequency librational modes due to intermolecular motions. They give a strong
absorption from around 700cm-! and below and when liquid water is present these
modes are important for the energy balance. Thus if clouds are present they strongly
influence the IR radiation. In addition to the absorption/emission clouds also generate

scattering in the IR regime.

Other gases contributing to the greenhouse effect

Nitrogen and oxygen are infrared inactive, but there are several other components of the
atmosphere that potentially could contribute to the greenhouse effect in addition to
carbon dioxide and water. Ozone is present in the upper atmosphere and a vibrational
mode around 1050cm-! contributes to the absorption/reemission. A compound that has
attracted much attention is methane. It is present at most altitudes, but degraded slowly
at higher altitudes. As shown in Fig 7 it has an absorption peak around 1250cm-! due to
the bending mode. Methane is present at low amounts with a partial pressure of .1-.2 Pa
at ground level. However it contributes to the absorption in a frequency range where the
atmosphere is largely transparent. It is claimed that addition of methane has strong
effect on the energy balance. It is obvious that methane provides only a small
contribution to the overall greenhouse effect. However, it can still be very important for
the marginal effect related to addition of more of the component to the atmosphere. The
oscillator strength is larger for the carbon dioxide than for the methane bending mode,

since the dipole derivative is larger in the former case. In addition the carbon dioxide
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band is at a frequency range closer to the maximum in the energy distribution. To see
how these factors influence the energy balance we now quantitatively analyze the

absorption/emission process in an atmosphere of varying pressure and temperature.

From where does the outgoing radiation emanate?

When one considers the radiation from the earth, where there is a temperature and
density profile in the atmosphere it becomes a relevant issue to consider from where the
emission emanates. Consider first a homogeneous layer with constant temperature and
density. Then one can see, as usual, the emission as the reverse of the absorption. It is
the surface layer that gives the largest contribution to the radiation. The contribution
decreases exponentially as one goes inside the layer. The length-scale is given by
e(w)/cosO so that radiation emitted perpendicular to the layer comes from the deepest
sources, while radiation near parallel to the slab emanates nearly exclusively from a

surface layer.

In the atmosphere the density decreases with height. The contribution to the emitted
radiation from a layer at height z was given in eq.(20) and by taking the derivative with
respect to z of this equation we find that if there is a maximum for a certain height it

occurs for

0e(w,z)
dz

= —&(w,z)* /cosO (28)
Assume, for example, that the absorption coefficient ¢(w,z) decreases exponentially
with height as was assumed for the density. Then the maximum in radiation comes from

a position zm given by

&(w,z) = &(w,0)exp(-Az) —
29

z,, =In[e(@,0)/Acos0]/n %)

This shows that the stronger the absorption at ground level, the more slowly decaying

the density and the smaller the angle the further out is the source of the radiation that

reaches outside the atmosphere. These conclusions would hold qualitatively for any
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other functional form of the monotonic decay of the density. One can note that if
&(w,0)/(AcosB) <1 then the maximum occurs for z=0 and there is only a small
contribution to the “greenhouse” effect at that frequency. However, there is a
complication in applying eq.(29) in that not only the density but also the line-shapes of

the spectral lines change with pressure and thus with height.

Effects of the lineshape
If one neglects complex formation the absorption of the IR atmosphere can be seen as

due to the sum of the absorption from the different IR-active molecules and (see eq.8)

£(@.2) = Y,¢,(De(@.2) (30),

where ci(z) is the concentration. For small molecules like carbon dioxide, water and
methane in air the vibrational absorption spectrum is due to transitions from a range of
thermally populated states for all relevant isotopic species. In addition to the ground
state, rotational states are populated up to relatively high rotational quantum numbers.
If there are vibrationel states with low excitation energies one can also have a sufficient
fraction of molecules in the v=1 vibrational states that there is a non-negligible
contribution to the absorption.

For each compound i the populations Pxi add to unity and

P} =exp(~hw, [KT)/ Y exp(~hw,, /KT) (31).

From each state k there are transitions to states | at resonance frequencies w,,. As long
as the transition frequencies are well separated relative to the inverse relaxation times
one can assume a Lorenztian shape for each transition. The molecular absoptivity then

consists of a sum of all states k, and all transitions k to |

B}clr;cl (2)/m
1+ (v, -0)°T;(2)

a(w.2) = 3 P Y {1 ~exp(~hw,, IKD)} (32),

l
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where I' denotes the relaxation time and we have used eq.(8) to account for the
stimulated emission in addition to the absorption. The eqs.(30-32) provide an explicit
expression in terms of molecular quantities for the absorption. In addition to the explicit
temperature dependent factors in eqs(31,32) the relaxation times I are also strongly

environment dependent.

The relaxation processes are due to intermolecular collisions/interactions and for gases
such processes are usually referred to as pressure broadening. For small molecules at
atmospheric pressures the rotational lines of the spectrum are sufficiently separated
and the relaxation times sufficiently long that one can consider the individual transitions
as independent. It is also reasonable to make the assumption that the dominant
relaxation route is through molecular collisions rather than formation of transient

complexes. The collision frequency Z can approximately be written as

Z =70 p(mkT)™""*  (33),

where 0. is the collision diameter and m the molecular mass. It is a reasonable first
approximation to assume that the relaxation time is equal to the angular momentum
relaxation time, which in turn can be assumed to be the inverse of the collision
frequency Z. It then follows that the relaxation time is inversely proportional to the

pressure so that

I}, (z) = ,,(0,T) p(0)/ p(z) = I}, (0,T) exp(Az) (34).

Thus spectral lines will be more narrow at larger heights. It is not sufficient to use the
observed absorption spectrum at ground level to describe the spectral properties at all
relevant heights. The higher the altitude the more structured is the absorption spectrum
and even for the carbon dioxide band one can have spectral regions with low absorption
close to peaks of strong absorption. For the case when the concentration is proportional

to the pressure

¢,(2) =c,(0)p(z)/ p(0) (35),
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which is approximately true for carbon dioxide and methane, but not for water, there is
a cancellation effect between the decrease in concentration and the increase in
relaxation time as the altitude changes. Combining eqs.(30-35) we find for the

contribution of a single transition k to | of species i

BT}, (0)c,(0)/m
1+ (w, - )T, (0)’[p(0)/ p(2)]°

£,(0.2) = c(2)a}, = P{1 - exp(=hw, /KT} (36).

Thus precisely at the resonance frequency there is, in this approximate description, no

z-dependence of the absorption, except for temperature effects in the coefficients. Away

from resonance,|(w,, - w)I‘,d| >1, on the other hand, the absorption coefficient depends

quadratically on the pressure and thus also on the concentration. For the case of an
exponentially decaying pressure (second equality of eq.34) the condition of eq.(28)

yields for the position of maximum radiation zm

el e ] -
20 | 2Mw -w,,) I;,(0)"cosO

For frequencies clearly off resonance the expression (37) for zu yields negative values,
which simply means that absorption/emission is negligible and it is the background
radiation from the ground that dominates. At resonance, on the other hand, the
expression for zv diverges indicating that the emission comes from high altitudes, but
also that a more detailed description is needed to avoid the numerical divergence. In
contrast to eq.(29) we have here allowed the absorption spectrum to be an explicit
function of z. For carbon dioxide the spectral characteristics at atmospheric pressure
(z=0) are shown in Fig.2. The inset in this figure shows, for example, a discernable peak

at 700cm 1. The absorption coefficient at resonance is obtained as
£,(0,,,0) = a(wy)ceo, (0) = 0.09m™" (38).

The relaxation time, at ground level can be estimated from the width at half height and

1

Aw,,, <> 02cm™ —T;%(0)=2-107"s. Using eq.(37) we can for this example find the

position of maximum emission. This is of interest since there is a gradient in
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temperature and the position for the emission reflects the energy of emission. With the

relevant parameter values in the example and for a perpendicular orientation
2y (0 —0,) = 3000{4.9 - 21n[|w - wk,|/Awl/2]} (39).

Thus when w = w,, + 2Aw,,, the emission emanates from a height of approximately
10km in this example. For larger deviations from resonance the radiation gradually
emanates from lower and lower heights with increasingly higher temperatures. For a

frequency 0.8cm ! away from resonance the estimated value of zv is 6km.

The effect of adding a component to the atmosphere

A very important question from a practical point of view is the consequence of adding a
component to the atmosphere. One aspect of this question is to what extent a
component added to the environment ends up in the atmosphere, rather than in the sea,
in the ground or being chemically converted. However, below we concentrate on the
question: given a certain increase in concentration of compound j in the atmosphere
what is the consequence for the emission of radiation? Adding a compound changes the
absorption coefficient in the expression for the emitted energy in eq.(21). When one
adds an amount nj per area of a compound at ground level it takes some time before an
equilibrium distribution is established. Due to the existence of the gradient in
temperature the maximum effect on the energy balance is typically obtained when the
compound has equilibrated in the gravitational field and we consider this case. At
equilibrium the fractional increase in concentration is uniform so that

dc . ,
c; (@) _¢,;(@) ~ A exp(-A 2)
on, n; ’ ’ (40)

where the second equality is valid for an in general molecular dependent exponentially

decaying concentration profile. Using this assumption we have

oe(w,z)

= A, exp(-A2)a (0,2) (41).
on ' '

i
By taking the derivative with respect to n; of eq.(21) we can identify three different

contributions to the change in energy emission
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1.4 ‘ T
e J"a“r’liw) = —{eo(w,TB){Aj exp(—)»jz)aj(w,z)dzexp[—i‘.(cu,0)/cos@]dcos@

ey(0,T(2))A;exp(-4;2)a ;(w,2) exp[—Z(a),z) /cos Q]dcos Odz (42)

e,(0,T(2))e(w, z)f)u exp(-4,z)a (w,z')dz’ exp[ —2(w, Z)/cosé)](cosﬁ) dzdcos0

The first term on the rhs represents the decrease in emission from the ground due to the
increased absorption (assuming n;>0). The second term is the increase due to
absorption and reemission from the atmosphere and the third term represents the
increase due to absorption of the reemitted radiation. When there is no variation in the

temperature so that T(z)=Tp the three terms add up to zero as should be the case.

Consider first the special case that the added compound is initially absent in the
atmosphere and it has an absorption in a transparent spectral region. This would, for
example, approximately apply to part of the bending mode of methane. Thus prior to
addition of the compound j we have that ¢(w) =0 in the relevant frequency range. It is
then only the first two terms on the rhs of eq(42) that contribute. Assume that the
pressure and the concentration decays with the same characteristic length and neglect
the (square root) temperature dependence of the relaxation time we find, using eqs

(4),(31) and (36)

| PTG
P(T,)

. (@) _ ho’
) [+ (0 —w,)’ T2 (0)exp(2A2)]

on.  2mc?

J

(43).

EBHI;,(O)AP (T,) f

Here one see explicitly that when T(z)=Tg there is no effect of the added component on
the energy balance. Each transition provides a contribution that is independent of the
others. We consider the case where all transitions involve a single vibrational excitation
of frequency w,combined with different rotational transitions. Thus for all frequencies

w,, /mw, =1.An integration over the frequency yields the accumulated effect of the

absorption band and
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on 2“ P(T,)

Moy T2, A EBk,P @) [ { d (T(Z))} xp(-Az)dz (44).

j

In the integral the first factor is increasing with increasing z while the second factor
decreases, demonstrating the importance of the temperature gradient for the total
effect. One readily calculates the screening effect of the absorption band with knowledge
of the spectral characteristics, the decay constant for the pressure and the temperature
profile. The rhs of eq.(44) is independent of the concentration and the decrease in
emitted radiation is thus depends linearly on added amount in this range as expected.
The eq.(44) can be further simplified by neglecting temperature effects in the population
of ground states and excited states, respectively. Then the sum of Bl over k and | can be
shown to simply be proportional the total absorption of the vibrational transition (see

additional material). Furthermore the integral can be evaluated if one assumes a

. ar\ .
constant, reasonably small, gradient {( — ) in temperature and
Z ayv

Vo _ h2j expl-ho, (KT, )]< > [ a,(@)do
n, "ot P dz

(45)
where Tay is the average temperature over the relevant interval. The eq.(45) provides a
simple relation for the reduction of outgoing radiation energy when one adds a
compound with an absorption/emission in a previously transparent spectral region.
System parameters that enter are; the temperature profile, the decay length for the
pressure decrease with increasing height, the vibrational frequency and the oscillatory

strength of the vibrational transition.

Now consider the other extreme where one adds a compound that is already present in
such amounts that, in the relevant frequency range, the radiation from the ground is
completely screened., so that Z(w,0) > 1. It is also assumed that in the relevant frequency
range the compound j is the dominant absorber/emitter. One can evaluate the induced
decrease in emission by explicitly evaluating the second and third terms in the rhs of
eq.(44). Here we take a simpler approach. From eqs (28) and (37) we have an explicit

expression for the position zy where the maximum of the radiation emanates. Now
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make the simplifying assumption that all the radiation for given frequency and direction

comes from this position. Then in analogy with eq.(11)

1

J (@) = 27¢ [ e,(.Tz,, 1)cos Od cos O (46)

out
0

Now the change induced by adding more of compound j is obtained by taking the

derivative and

1 T 1 T
al,,.(w) _ 2ncf dey(w,1z,,1) dz,, cosOdcosd = e f&eo(a), [z, ]
on 0

dz,, on; c;(0) dz,,
(47)

cosBOdcosf

J

where the second equality follows from the simple relation

9oy 1
on; 2c;0)

J

(48)

obtained from eq.(35). Note that even though zv depends on the angle theta this doesn’t
show up in the derivative. The eq.(47), which can also be derived through an explicit
integration of the second and third terms of eq.(42) (see additional material), shows that
the shift in the position of maximum outgoing radiation is inversely proportional to the
concentration at ground level, which in turn implies that the same relation holds for the
change in emitted energy. Thus the emitted energy depends logarithmically on the
concentration. The eq.(47) also shows that the change in emitted energy is independent
of the absorption properties of compound j except for the condition that the absorption
is strong enough to screen out the radiation from the ground. Given the temperature
profile the integral in eq.(47) is easily evaluated. Use the linear approximation of
eq.(22). In the integration over frequency a non-zero contribution is only obtained for
the spectral region where the atmosphere is non-transparent. In the frequency

dependent factors one can with reasonable approximation replace @ —w,. Then from

eq.(47) we obtain
aJ o - o’ 1 /or

out ( max - 2mm)2 v exp[—ha)v /(kTav)]—<—> (4‘9)
on; 8 c kT, c,0)\dz/,,
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Here w_, ,w . denotes the maximum and minimum frequencies where the condition

max ?

2(@,0) > 1 of non-transparency applies. In eq.(49) the change in energy loss is expressed
in terms of readily accessible parameters. The equation provides a clear picture of what
factors influence the enrgy balance for the particular case and it can also serve as a

reasonable quantitative estimate of the effect.

Comparing the effects of adding methane and carbon dioxide to the atmosphere.

From eqs.(45) and (49) one can calculate the ratio of the effect of adding a compound M
absent in the atmosphere and one, C, already present in such amounts that the total
atmosphere is not transparent in a given frequency range.

The ratio is

out

[0, /dn 1,6 _ 4wy, exp(-hw, KT, )cc(0) [ &}, (@)do

; wlexp(=ho,. kT )M w_ . —w ) (50)
[0’) JZut /§nj]49 Cc p c av max min
The ratio is in this example, with a single vibrational frequency for each compound,
determined by the respective frequencies of the vibrational transitions, the oscillatory
strength of the vibrational transition of compound M, by the pressure decay length, by

the concentration at the ground level of compound C and by the frequency span of the

non-transparent region for compound C.

Comparison with literature data

Different ipcc reports provide quantitative statements of the effect of adding gases to the
atmosphere. It is not easy (for me) to trace back to the original calculations. The key
quantity is “radiative forcing”, AF (W/m?2), which I interpret as the decrease in energy
emission caused by an increase in the concentration of the gas. There are different levels
of approximations and the treatment presented above should correspond to the
simplified one-dimensional model. For carbon dioxide, which is present at a high

concentration, the relation is

AF =aln(C/C,)

51
o =535 1)
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Taking the derivative of AF we can relate the radiative forcing to the change in Jem and

a‘lout

= —Aa/c(0) (52),
on

J

where now alfa is defined in eq.(51). The current concentration of carbon dioxide is
given as approximately 350ppm. This probably refers to a per volume basis making the
concentrationx1.3 10-20m-3, With a decay constant of 1.7 10-*m-! the estimated value in
the icpp report is

aJ
—aut _ _12-107"W /molecule

IMNeoy

If we instead use the estimate calculated in eq.(49) the result is

aJ
—aut _ _57-1075W /molecule

MNeo,

which is a factor of five higher using the values of the parameters shown in the table
below. Whether this discrepancy is due to a simple numerical mistake in eq.(49), as for
example a factor of 2m, or if it has some real significance is unclear at present. In eq.(49)
there is no reduction from interference of water clusters, but that is seemingly not
accounted for in eq.(51) either. However, there is a reduction of the emission due to

scattering by clouds, which is not accounted for in eq.(49) but presumably in eq.(51).

It is less straightforward to compare the icpp estimate for the effect of methane with the
present calculations. The basic reason is that the icpp report considers a more realistic
case where methane is already present in sufficient amount to make the assumption of
initial transparency questionable. Consequently the report predicts a weaker
concentration dependence than the linear one implied for a transparent region. In the

absence of interference by N20 the “radiative forcing” due to methane is given as

AF=a{W—M}

a =0.036(W /m?)

(53)

where M is measured in ppbv. Converted to the effect per added molecule this relation

implies
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oJ

out

AF JAF oM dc(0 1
=- c©) = ——oaM"*10°kTA/ p(atm) (54)
on,  on, oM () on, 2

J

With M=1500 for methane and p(atm)=1 105Pa and the value of alfa=0.036 from eq.(53)

we have the calculated effect of adding methane to the atmosphere of

aJ
—out _ _3.10"*W /molecule

ﬁnj

according to the ipcc report. If we instead use eq.(45) given above the corresponding

value is substantially higher

aJ
—aut — _7- 1072 W /molecule

ﬁnj

This is an overestimate since it is based on the assumption that the existing levels of
methane are sufficiently low so that there masking effect is negligible over the whole
spectrum. In addition the overlap of the high frequency branch of the methane bending
vibration and the low frequency part of the water bending is substantial. To what extent
this is accounted for in the ipcc-model is not known to me. Furthermore is the effect of
scattering in clouds not taken into account. An additional effect is that for z>12000m the
temperature gradient changes sign and for the stronger absorption peaks zu occurs for

these heights (see eq 39) and the contribution to the emitted energy changes sign.

Relative effect of methane and carbon dioxide.

The relative effect of adding methane and carbon dioxide to the atmosphere follows
directly from the data given above. From the ipcc report it follows that

I /o0 1y,

out

I, 190 1o,

out j

~25

while with the estimates given above we have

aJ;

out

aJ;

out

1on 1y,

~135.
/o”nj]co2

This value is a clear overestimate due to the effect of the overlap with the water bending
mode and the fact that one can’t neglect the effect of the methane already present in the

atmosphere. The effect of scattering in clouds has to be analyzed specifically, but one
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could possibly think that the effect cancels in the ratio. In reality the problem is more

subtle.

Table showing parameter values used in the quantitative estimates (methane absorption
intensity from Albert et al 2009):

w,, =1311cm™

W, =66Tcm™

[ o do =510 Q@reym’s™ (129cm *arm™)
A=17-10"m™

Cror(0) = 350ppm <> 4.5- 10 kg/m* < 6:10*'m’

-1
w. . —o_. =350cm

T, =260K

Conclusions

We have analyzed how the energy emitted from the earth in the infrared region is
affected by the presence of an atmosphere containing molecules in the gas phase that
can absorb and emit radiation. The basis of the greenhouse effect is that if one has an
absorber/emitter that is thermally isolated from the ground it acts to reduce the
outgoing radiation energy by cooling the local environment. Since the emitted energy for
a black body is proportional to the fourth power of the temperature a reduction in
temperature for the emitter has substantial consequences for the energy balance. The
main IR absorbers/emitters in the atmosphere are carbon dioxide and water. The
bending vibration of carbon dioxide centered at the “frequency” 667cm-! gives a large
contribution to the greenhouse effect in the spectral range 500 to 850cm-1. For water the
situation is more complex. There is a contribution from the bending vibration centered
at 1540cm-1. However, for partial pressures close to saturation water vapor contains
dimers, trimers and clusters and these give rise to intermolecular vibrational bands at
from 700cm-! and lower. The net intensity of these absorption transitions depends
strongly on the relative humidity and it is not easy to quantify their role in the energy
balance. They occur in the lower part of the carbon dioxide vibrational band and could
partly mask the effect of this compound. This is particularly relevant at lower altitudes
where the concentration of water is much higher than that of carbon dioxide. In the

region 850 to 1250cm-! the atmosphere is nearly transparent and adding compounds
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with absorption in this range affects the energy balance strongly. Methane has bending

vibrational mode centered at 1310cm-! potentially making it potent “greenhouse gas”.

By making the simplifying assumptions that a) the concentration profile of gases like
carbon dioxide and methane, but not water decay exponentially with height with the
same characteristic length as the pressure, b) that the widths of the spectral transitions
are due to pressure broadening and proportional to the pressure and c) that one can
linearize the dependence of temperature on height we have derive explicit analytical
expressions for the effect on the energy balance of i) adding a compound to the
atmosphere with an absorption in a transparent region and ii) adding a compound
already present in such amounts that the atmosphere, as seen from outside, is not
transparent in the spectral region of the absorption. In the former case the effect
depends linearly on the added amount, while in the second case the dependence is
logarithmic. We also find a simple analytical expression in terms of easily accessible
parameters for the ratio between the two effects. The calculated cooling effects of
carbon dioxide and methane are larger (factors of five and twenty for carbon dioxide
and methane, respectively) than implied in the ipcc reports. In the latter case more
effects of scattering and other effects are accounted for in amore careful way, which
could explain the discrepancy. An additional possibility is that [ have made some simple
numerical mistake of a factor of two or 1 or that conversions of units have introduced
errors. A virtue with the analysis presented above is that it shows simple analytical
forms for the effect in two relevant limits. Analytical expressions are transparent and
can serve as a framework for thinking about complications such as scattering/emission

of clouds and aerosol particles.

Hakan Wennerstrom Lund 2011 01 10
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Figure 1. Energy of IR-light emitted from the earth
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Figure 2

Temperature profile in the atmosphere
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Figure 3 Overview of CO; vibrational spectrum. The crucial band is the one to the right.
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Figure 4 Absorption coefficient for carbon dioxide at p=1atm
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Figure 4.7: The absorption coefficient vs. wavenumber for pure OOy at a temperature of 203K
and pressure of 10°Pa. This graph is not the result of a measurement by a single instrument, but
is synthesized from absorption data from a large number of laboratory measurements of spectral
features, supplemented by theoretical caleulations. The inset shows the detailed wavenumber
dependence in a selected spectral region.
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Figure 5 Water in gas phase. The bending mode shows absorption down to 1200 cm-!
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Figure 6. Methane vibrational spectrum with bending mode centered around 1250cm-!
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Greenhouse effect. Supplementary material

Simplification of eq.(44) to vield eq.(45).

Relation between By and transition moments. The Einstein coefficient By of eq.(5) is
through the Fermi Golden Rule for a dipolar vibrational transition related to the
transition dipole moment. For example Atkins (Molecular Quantum Mechanics) gives

2
_ |Mk1|
ki 6607’[2 '
However this implicitly presupposes a frequency unit of Hertz rather than radians per
second as used in the present text. Additionally one has made an isotropic orientational
average. Relevant for the present case is thus the slightly modified relation

2
g, (Q)
Sohz (AZ)
There is a simple relation between the Einstein coefficient and the line intensity
coefficients B'w in eq.(44) as given in connection with eq.(8). We have

(A1)

0]
Bkl =

2
, - o
B, =hw,B;/c = M

ceh A3)

Evaluation of transition moment. For vibration rotation transitions the states k and | can
be described as combined vibration-rotation states and represented by state vectors

k) =[0),]7,),

|l> = 1>v J1>R (A4a,b)

We have in addition that @(Q) = i1, cos® and

1@ = 3 (k@) k) = 3 (0}t |1){1[f1,,/0)(, |c0s 6], ){4, [cos6]1,) =
I

I i

|<1|ﬁ¢m0,|0>|2<Jk |cos HE|J,><J, |cos6|J, ) = |<1|[Am0,|0>|2<Jk |cos?0]J, ) =
l

~ 2 .
(U OF {2 13) 30, Beos*0 =022} = Y4l o -

where the last equality follows from the rotational symmetry of the spherical harmonics
functions. This shows that when we sum over initial rotational states we regain the total
oscillatory strength of the vibrational transition. The total intensity of the vibrational
transition is, if one disregards the stimulated emission, (See for example Atkins)

W, |/~ 2 ,
fa(a))da) = 3C80h|<1|lumol|0>| = 2Bk1 (A6)

where the last equality follows from eqs (A3,A5)
Evaluation of the integral over z.

For the case when the temperature gradient is limited one can linearize and evaluate the
integral over z in eq.(44) Thus
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<[ ) 2] exp{-ho, kT (2)) 3
d {I‘W}CXI’(‘W“{ {1- exp{ e, 147, }e’“’(‘“"“

ho (dT/dz) 7%

f(h I )exp( A2)dz = - = fzexp(—?»z)dz =

3 1(2) kT
ha)v<dT/dz>aV

A7
k];ZV)LZ ( )

which is independent of 1.

Evaluation of the Boltzmann factor Pi(Tp)

The probability of occupying a particular vibrationally excited state | is reduced by the
fact that there is a large number of rotational states of the ground state vibrational

energy. Thus

exp(-hw, /kTy) exp( hw, kTy)exp(-hw,, kT, )
Eexp( —hw,, IKT,) Eexp( —hw,, IKT,)

P(Ty) =

exp(-hw, (kT,) (48)

Y exp(~ha, /KT,)
k
which is also independent of 1.

exp(-hw, /kTy)

Combination of eqs A6-8.

By combining eqs (A6-8) we now have

exp(-hw, /(kTy) _

P ho (dT1d
EBk,P(T [ {1- f((g)} xp(~Az)d z-W exp(—ha, /KT )EB,d

how,(dT/dz),,
_Wexp(—hwv 1kTy) f o(w)dw

(A9), which inserted into eq.(44) gives eq.(45).

Eexp( —hw, /kT,)

34



Derivation of the temperature profile in an atmosphere without other heat
conduction mehanisms.

In eq (13) we found a simple expression for the effect of a perfectly absorbing thermally
isolated layer on the temperature and the resulting emission. In an atmosphere there is
emission and absorption at all positions and seen as a thin layer it will always be only
marginally absorbing and emitting. The integral effect, however, is what we have
analyzed taking the observed temperature profile as input. It is a major undertaking to
find a realistic model for the energy transport in the atmosphere. In addition to
convection there is also water evaporation/condensation/precipitation. Let us consider
the extreme case of only radiative energy transfer to elucidate the greenhouse effect also
with respect to the temperature profile.

Consider an atmosphere with a uniform density so that the absorbance of a layer of
thickness dz is

A(w,z,0) = p,odz/cosO (B1),

where we assume that there is no frequency dependence of the absorbance. For a real
atmosphere the density decays with increasing height but by using a scaling relation

y = %{exp(kz) -1} (B2)

one can cover also this situation. A thin layer at z of thickness dz will emit (in both
directions)

1
J,.(2) = 2ffZTl:ceo(a),T(z))A(a),H)cos@dcosHda)dz = (83)
0 )

40T (2) poodz

where we have use eqs (B1, 10,12). At steady state this emitted energy is balanced by an
absorption of radiation coming from the black body at z=0, from the gas between the
ground an the layer at z and from the gas above the layer. The combined absorbed
energy is

J () = 20 [ {cos(O)T* (0)exp| ~zp,ct /cos(6) ]

fT4(z')p0aexp[-p0a(z ~2')/cos(6) Jdz'+ (B4)

[T () pyaexp -pya(z ~2) [cos(O) Jdz'} CSSO;) dcos(0)dz

Using scaled variables

x = p,02,T4(2) = f,(x) (BS)
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and then balancing emitted and absorbed energy gives

2f,(x) = f{cos(@)f4 (0)exp(—x/cos(0)) + jf4 (x")exp[-(x — x")/cos(0)]dx'+
0 1 0 (B6)

COos

jf4 (x")exp[-(x'-x)/cos(0)]dx'"} 5 dcos(0)

This equation can be simplified by partial integration of the last two terms of the rhs.
Then one finds that the condition for energy balance is

) {f fi(xexpl=(x - x')/cos(O)]dx — [ f,(x")exp[~(x'~x)/cos(B)]dx}dcos(0) =0 (B7)

This is an integral equation for the derivative of the T4 temperature profile. To define a
solution one has to add a boundary condition in addition to the one for z=0. Clearly if the
temperature far away is also T(0) the equation is satisfied when he derivative is zero
and one has a constant temperature as expected. If the temperature is low far out and if
x>>1 the two integrals cancel for a constant value of f4'(x). This case corresponds to the
model discussed on p6 with a sequence of black body layers. A constant derivative of
f4(x) implies a temperature profile

) Cp,0z 1/4
T(z) = T(O)(l " T07 ) (B8).

For a more weakly absorbing system the integral equation (B7) has to be solved
numerically.
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Evaluation of eq.49 through direct integration.

For the case of a strongly absorbing compound we can neglect the radiation from the
ground so that I is only the second and third terms of the rhs of eq. (42) that are of
interest. Make the assumptions that we only need to consider absorption of one
compound in the frequency range of interest. The integral over z’ in the third term can
be simplified

o0

faj(a),z')exp(—)»z')dz'—% ¢;0)a (w,z")exp(- -Az")dz'0
(C1)

fs(w ) = S(w,2)

(0) c;(0)

using his result we can now make a partial integration of the third term and

fZ(w,z)exp[—Z(a),z) /cos(6)]/cos(B)dcos(0) =

(C2)
1
exp[-2(w,z)] - fexp[—Z(a),z)/cos(G)]dcos(G)
0
The to terms, called Tz and T3, can now be summed and
T,+T, = (0){ [ e T@e(w.2)expl-S(w.2)1ds -
(C3)

-2 f e,(w,T(z))e(w,z) f exp[-2(w,z)/cos(0)]dcos(0)dz}

This can be brought to a form more suitable for explicit evaluation through a partial
integration and

_ de,(w,T(z)) _ _
T,+T, = (0) { f o expl-X(@.2)ldz
(C4)

-2 { %’ZT(Z» { exp[-Z(w,z)/cos(6)]cos(8)d cos(0)dz}

Note that if there is no gradient in temperature there is no net effect of the gas. If we
now make the assumption the the absorption is due to a sum of Lorenztian with a line-
with that decreases exponentially with increasing height we have that

2(w,7) = fé'(a),Z')dZ': Egkjl(wkl ,O)II/[I +(w - wkl)zrfl(O)epr)uz')dZ -
L T : (c5)
E—%;ﬂi’ D in gl +1/[(w - )’ T}, exp(2Az)

kl
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Thus we can write

-&1,(0)/2A
1
exp(-2(w,z)) = 1;[{1 + (0 -w,,)*T2(0) exp(ZAZ)} ’
(Co)

1 -£7,(0)/(24 cos(8))
exp[-2(w,z)/cos(0)] = {1 + } )
1;[ (w -w,)’'T:(0)exp(242)

When this is inserted into eq(42) we obtain

de,[w,T(2)] { . 1 } .

dz (w -, (0)exp(2Az)

To evaluate the total contribution this expression has to be integrated over all
frequencies in the relevant range. If we assume that we can neglect overlap between
peaks the product terms in eq (C7) are different from unity only over a small frequency
range +-Aomega/2 around each resonance frequency. The decrease in energy output is
then

= A0l g, [w T(Z) 1 €y 122
2 - ouf ~ 0 d d
( J—EC) j c. (0) ;Zf f a)ZI—;CZI (O)CXP(Z}\,Z) zam +
“A02 1 Do [w T(z)] 1 i (25 os®) (c8)
E f f f : { T2 } dcos(0)dwdz
< <0> T 2o O o’T;, (0)exp(2Az)

Here the integration has been limited to the frequency range where the frequency
dependent factor in the integrand has been reduced to %. Furthermore it is then not
consistent to integrate for z-values that are small than when the frequency range goes to
zero. This condition defines zmin S0 that

o, =[e],/A21n2]"°T}, exp(Az)
(Cos(B)) =[g/ / Acos(0)21n2]"*T};' exp(Az)

mm C9
z.. =A'In[(2e},/ AIn2)"? /AwT},] (©)

(cos(8)) = A In[(2¢}, / Acos(6)In2)""? / AwT},]

mm

[t is still problematic to solve the integrals. First we replace the gradient in e by the
average value as done in the main text. Then we series expand the remaining factor in
the integrand and

1 ! y 1
- =l-—————— C10
{ w’T?exp(2Az) } Iexp2Az) * (C10)

With this simplification is the integration over frequency straightforward. The interation
over z involves several terms but they add nicely up to the simple result that for each
transition kl there is a contribution to the decrease in emission of magnitude
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0, Wy @) Aw
(ZTEC) (an] )kl = { oz }av Cj(O) (Cll)

Summing over all transitions cover, by definition, the frequency width of the whole
vibrational peak and we regain eq.(49). (However this is a factor of four larger than
previously obtained. I havn’t gone through carefully to see if this is due to a simple error

in the calculations presented above)
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